
Genetic Algorithm and Direct Search Toolbox 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Genetic Algorithm and Direct Search Toolbox User’s Guide

© COPYRIGHT 2004–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
January 2004 Online only New for Version 1.0 (Release 13SP1+)
June 2004 First printing Revised for Version 1.0.1 (Release 14)
October 2004 Online only Revised for Version 1.0.2 (Release 14SP1)
March 2005 Online only Revised for Version 1.0.3 (Release 14SP2)
September 2005 Second printing Revised for Version 2.0 (Release 14SP3)
March 2006 Online only Revised for Version 2.0.1 (Release 2006a)
September 2006 Online only Revised for Version 2.0.2 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Third printing Revised for Version 2.2 (Release 2007b)

Acknowledgment

Acknowledgment
The MathWorks™ would like to acknowledge Mark A. Abramson for his
contributions to the Genetic Algorithm and Direct Search Toolbox. He
researched and helped with the development of the linearly constrained
pattern search algorithm.

Dr. Mark A. Abramson is Associate Professor in the Department
of Mathematics and Statistics, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio. Dr. Abramson is actively engaged in research
for pattern search methods. He has published over 26 technical papers and
has worked on NOMAD, a software package for pattern search.

Acknowledgment

Contents

Introducing Genetic Algorithm and Direct
Search Toolbox

1
What Is Genetic Algorithm and Direct Search

Toolbox? . 1-2

Writing M-Files for Functions You Want to Optimize . . 1-3
Computing Objective Functions . 1-3
Example — Writing an M-File . 1-3
Maximizing vs. Minimizing . 1-4

Getting Started with Direct Search

2
What Is Direct Search? . 2-2

Performing a Pattern Search . 2-3
Calling patternsearch at the Command Line 2-3
Using the Pattern Search Tool . 2-3

Example: Finding the Minimum of a Function Using
the GPS Algorithm . 2-6
Objective Function . 2-6
Finding the Minimum of the Function 2-7
Plotting the Objective Function Values and Mesh Sizes . . 2-8

Pattern Search Terminology . 2-10
Patterns . 2-10
Meshes . 2-11
Polling . 2-11
Expanding and Contracting . 2-12

vii

How Pattern Search Works . 2-13
Context . 2-13
Successful Polls . 2-13
An Unsuccessful Poll . 2-16
Displaying the Results at Each Iteration 2-17
More Iterations . 2-18
Stopping Conditions for the Pattern Search 2-19

Description of the Nonlinear Constraint Solver 2-22

Getting Started with the Genetic Algorithm

3
What Is the Genetic Algorithm? . 3-2

Using the Genetic Algorithm, Command Line or
Tool . 3-3
Calling the Function ga at the Command Line 3-3
Using the Genetic Algorithm Tool . 3-4

Example: Rastrigin’s Function . 3-7
Rastrigin’s Function . 3-7
Finding the Minimum of Rastrigin’s Function 3-9
Finding the Minimum from the Command Line 3-11
Displaying Plots . 3-12

Some Genetic Algorithm Terminology 3-16
Fitness Functions . 3-16
Individuals . 3-16
Populations and Generations . 3-17
Diversity . 3-17
Fitness Values and Best Fitness Values 3-17
Parents and Children . 3-18

How the Genetic Algorithm Works 3-19
Outline of the Algorithm . 3-19
Initial Population . 3-20
Creating the Next Generation . 3-21

viii Contents

Plots of Later Generations . 3-23
Stopping Conditions for the Algorithm 3-23

Description of the Nonlinear Constraint Solver 3-26

Getting Started with Simulated Annealing and
Threshold Acceptance

4
What Are Simulated Annealing and Threshold

Acceptance? . 4-2

Calling the Simulated Annealing and Threshold
Acceptance Solvers . 4-3

Example: Minimizing De Jong’s Fifth Function 4-4

Some Simulated Annealing and Threshold Acceptance
Terminology . 4-6
Objective Function . 4-6
Temperature . 4-6
Annealing Schedule . 4-6
Reannealing . 4-6

How Simulated Annealing and Threshold Acceptance
Work . 4-8
Outline of the Algorithm . 4-8
Stopping Conditions for the Algorithm 4-9

Using Direct Search

5
Overview of the Pattern Search Tool (GUI) 5-2

Opening the Pattern Search Tool . 5-2
Defining a Problem in the Pattern Search Tool 5-3

ix

Running a Pattern Search . 5-4
Example — A Linearly Constrained Problem 5-5
Pausing and Stopping the Algorithm 5-8
Displaying Plots . 5-8
Example — Working with a Custom Plot Function 5-10
Setting Options in the Pattern Search Tool 5-14
Importing and Exporting Options and Problems 5-15
Generating an M-File . 5-18

Performing a Pattern Search from the Command
Line . 5-19
Calling patternsearch with the Default Options 5-19
Setting Options for patternsearch at the Command Line . . 5-21
Using Options and Problems from the Pattern Search

Tool . 5-23

Pattern Search Examples: Setting Options 5-25
Poll Method . 5-25
Complete Poll . 5-27
Using a Search Method . 5-32
Mesh Expansion and Contraction . 5-35
Mesh Accelerator . 5-40
Using Cache . 5-41
Setting Tolerances for the Solver . 5-43
Constrained Minimization Using patternsearch 5-48

Parameterizing Functions Called by patternsearch . . . 5-52
Using Additional Parameters . 5-52
Parameterizing Functions Using Anonymous Functions

with patternsearch . 5-52
Parameterizing a Function Using a Nested Function with

patternsearch . 5-54

Using the Genetic Algorithm

6
Overview of the Genetic Algorithm Tool 6-2

Opening the Genetic Algorithm Tool 6-2

x Contents

Defining an Unconstrained Problem in the Genetic
Algorithm Tool . 6-3

Running the Genetic Algorithm . 6-4
Pausing and Stopping the Algorithm 6-5
Displaying Plots . 6-7
Example — Creating a Custom Plot Function 6-9
Reproducing Your Results . 6-12
Setting Options in the Genetic Algorithm Tool 6-13
Importing and Exporting Options and Problems 6-14
Example — Resuming the Genetic Algorithm from the

Final Population . 6-18
Generating an M-File . 6-22

Using the Genetic Algorithm from the Command
Line . 6-23
Running ga with the Default Options 6-23
Setting Options for ga at the Command Line 6-24
Using Options and Problems from the Genetic Algorithm

Tool . 6-27
Reproducing Your Results . 6-27
Resuming ga from the Final Population of a Previous

Run . 6-29
Running ga from an M-File . 6-29

Genetic Algorithm Examples . 6-32
Improving Your Results . 6-32
Population Diversity . 6-32
Fitness Scaling . 6-37
Selection . 6-40
Reproduction Options . 6-41
Mutation and Crossover . 6-41
Setting the Amount of Mutation . 6-42
Setting the Crossover Fraction . 6-44
Comparing Results for Varying Crossover Fractions 6-48
Global vs. Local Minima . 6-50
Using a Hybrid Function . 6-54
Setting the Maximum Number of Generations 6-57
Vectorizing the Fitness Function . 6-58
Constrained Minimization Using ga 6-59

Parameterizing Functions Called by ga 6-65
Using Additional Parameters . 6-65

xi

Parameterizing Functions Using Anonymous Functions
with ga . 6-65

Parameterizing a Function Using a Nested Function with
ga . 6-66

Using the Simulated Annealing and Threshold
Acceptance Algorithms

7
Using the Simulated Annealing and Threshold

Acceptance Algorithms from the Command Line . . . 7-2
Running simulannealbnd and threshacceptbnd with the

Default Options . 7-2
Setting Options for simulannealbnd and threshacceptbnd

at the Command Line . 7-3
Reproducing Your Results . 7-5

Simulated Annealing and Threshold Acceptance
Examples . 7-7

Options Reference

8
Pattern Search Options . 8-2

Pattern Search Tool vs. Command Line 8-2
Plot Options . 8-3
Poll Options . 8-5
Search Options . 8-8
Mesh Options . 8-12
Algorithm Settings . 8-13
Cache Options . 8-13
Stopping Criteria . 8-14
Output Function Options . 8-15
Display to Command Window Options 8-17
Vectorize Option . 8-18
Options Table for Pattern Search Algorithms 8-19

xii Contents

Genetic Algorithm Options . 8-23
Genetic Algorithm Tool vs. Command Line 8-23
Plot Options . 8-24
Population Options . 8-27
Fitness Scaling Options . 8-29
Selection Options . 8-31
Reproduction Options . 8-32
Mutation Options . 8-33
Crossover Options . 8-35
Migration Options . 8-39
Algorithm Settings . 8-39
Multiobjective Options . 8-40
Hybrid Function Options . 8-40
Stopping Criteria Options . 8-41
Output Function Options . 8-41
Display to Command Window Options 8-43
Vectorize Option . 8-44

Simulated Annealing and Threshold Acceptance
Algorithm Options . 8-45
saoptimset At The Command Line . 8-45
Plot Options . 8-45
Temperature Options . 8-47
Algorithm Settings . 8-48
Hybrid Function Options . 8-49
Stopping Criteria Options . 8-49
Output Function Options . 8-50
Display Options . 8-51

Functions — By Category

9
Genetic Algorithm . 9-2

Direct Search . 9-2

Simulated Annealing and Threshold Acceptance
Algorithms . 9-3

xiii

Functions — Alphabetical List

10

Examples

A
Pattern Search . A-2

Genetic Algorithm . A-2

Simulated Annealing and Threshold Acceptance
Algorithms . A-2

Index

xiv Contents

1

Introducing Genetic
Algorithm and Direct
Search Toolbox

What Is Genetic Algorithm and
Direct Search Toolbox? (p. 1-2)

Introduces the toolbox and its
features.

Writing M-Files for Functions You
Want to Optimize (p. 1-3)

Explains how to write M-files that
compute the functions you want to
optimize.

1 Introducing Genetic Algorithm and Direct Search Toolbox

What Is Genetic Algorithm and Direct Search Toolbox?
Genetic Algorithm and Direct Search Toolbox is a collection of functions that
extend the capabilities of Optimization Toolbox and the MATLAB® numeric
computing environment. Genetic Algorithm and Direct Search Toolbox
includes routines for solving optimization problems using

• Direct search

• Genetic algorithm

• Simulated annealing

These algorithms enable you to solve a variety of optimization problems that
lie outside the scope of Optimization Toolbox.

All the toolbox functions are MATLAB M-files made up of MATLAB
statements that implement specialized optimization algorithms. You can view
the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of Genetic Algorithm and Direct Search
Toolbox by writing your own M-files, or by using the toolbox in combination
with other toolboxes, or with MATLAB or Simulink®.

1-2

Writing M-Files for Functions You Want to Optimize

Writing M-Files for Functions You Want to Optimize

In this section...

“Computing Objective Functions” on page 1-3

“Example — Writing an M-File” on page 1-3

“Maximizing vs. Minimizing” on page 1-4

Computing Objective Functions
To use Genetic Algorithm and Direct Search Toolbox, you must first write an
M-file (or else an anonymous function) that computes the function you want
to optimize. The M-file should accept a vector, whose length is the number
of independent variables for the objective function, and return a scalar. This
section explains how to write the M-file.

Example — Writing an M-File
The following example shows how to write an M-file for the function you want
to optimize. Suppose that you want to minimize the function

The M-file that computes this function must accept a vector x of length 2,
corresponding to the variables x1 and x2, and return a scalar equal to the value
of the function at x. To write the M-file, do the following steps:

1 Select New from the MATLAB File menu.

2 Select M-File. This opens a new M-file in the editor.

3 In the M-file, enter the following two lines of code:

function z = my_fun(x)
z = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + x(2)^2 - 6*x(2);

4 Save the M-file in a directory on the MATLAB path.

To check that the M-file returns the correct value, enter

1-3

1 Introducing Genetic Algorithm and Direct Search Toolbox

my_fun([2 3])

ans =

-5

Maximizing vs. Minimizing
The optimization functions in Genetic Algorithm and Direct Search Toolbox
minimize the objective or fitness function. That is, they solve problems of
the form

If you want to maximize f(x), you can do so by minimizing -f(x), because the
point at which the minimum of -f(x) occurs is the same as the point at which
the maximum of f(x) occurs.

For example, suppose you want to maximize the function

described in the preceding section. In this case, you should write your M-file
to compute

and minimize this function.

1-4

2

Getting Started with Direct
Search

What Is Direct Search? (p. 2-2) Introduces direct search and pattern
search.

Performing a Pattern Search (p. 2-3) Explains the main function in the
toolbox for performing pattern
search.

Example: Finding the Minimum of a
Function Using the GPS Algorithm
(p. 2-6)

Provides an example of solving an
optimization problem using pattern
search.

Pattern Search Terminology (p. 2-10) Explains some basic pattern search
terminology.

How Pattern Search Works (p. 2-13) Provides an overview of direct search
algorithms.

Description of the Nonlinear
Constraint Solver (p. 2-22)

Explains the Augmented Lagrangian
Pattern Search (ALPS).

2 Getting Started with Direct Search

What Is Direct Search?
Direct search is a method for solving optimization problems that does not
require any information about the gradient of the objective function. Unlike
more traditional optimization methods that use information about the
gradient or higher derivatives to search for an optimal point, a direct search
algorithm searches a set of points around the current point, looking for one
where the value of the objective function is lower than the value at the current
point. You can use direct search to solve problems for which the objective
function is not differentiable, stochastic, or even continuous.

The Genetic Algorithm and Direct Search Toolbox implements two direct
search algorithms called the generalized pattern search (GPS) algorithm
and the mesh adaptive search (MADS) algorithm. Both are pattern search
algorithms that compute a sequence of points that get closer and closer
to an optimal point. At each step, the algorithm searches a set of points,
called a mesh, around the current point—the point computed at the previous
step of the algorithm. The mesh is formed by adding the current point to
a scalar multiple of a set of vectors called a pattern. If the pattern search
algorithm finds a point in the mesh that improves the objective function at
the current point, the new point becomes the current point at the next step
of the algorithm.

The MADS algorithm is a modification of the GPS algorithm. The algorithms
differ in how the set of points forming the mesh is computed. The GPS
algorithm uses fixed direction vectors, whereas the MADS algorithm uses a
random selection of vectors to define the mesh.

2-2

Performing a Pattern Search

Performing a Pattern Search

In this section...

“Calling patternsearch at the Command Line” on page 2-3

“Using the Pattern Search Tool” on page 2-3

Calling patternsearch at the Command Line
To perform a pattern search on an unconstrained problem at the command
line, call the function patternsearch with the syntax

[x fval] = patternsearch(@objfun, x0)

where

• @objfun is a handle to the objective function.

• x0 is the starting point for the pattern search.

The results are:

• x — Point at which the final value is attained

• fval — Final value of the objective function

“Performing a Pattern Search from the Command Line” on page 5-19 explains
in detail how to use the patternsearch function.

Using the Pattern Search Tool
To open the Pattern Search Tool, enter

psearchtool

2-3

2 Getting Started with Direct Search

To use the Pattern Search Tool, first enter the following information:

• Objective function — The objective function you want to minimize.
Enter the objective function in the form @objfun, where objfun.m is an
M-file that computes the objective function. The @ sign creates a function
handle to objfun.

• Start point — The initial point at which the algorithm starts the
optimization.

In the Constraints pane, enter linear constraints, bounds, or a nonlinear
constraint function for the problem. If the problem is unconstrained, leave
these fields blank.

2-4

Performing a Pattern Search

Then, click Start. The tool displays the results of the optimization in the
Status and results pane.

In the Options pane, set the options for the pattern search. To view the
options in a category, click the + sign next to it.

“Finding the Minimum of the Function” on page 2-7 gives an example of using
the Pattern Search Tool.

“Overview of the Pattern Search Tool (GUI)” on page 5-2 provides a detailed
description of the Pattern Search Tool.

2-5

2 Getting Started with Direct Search

Example: Finding the Minimum of a Function Using the
GPS Algorithm

In this section...

“Objective Function” on page 2-6

“Finding the Minimum of the Function” on page 2-7

“Plotting the Objective Function Values and Mesh Sizes” on page 2-8

Objective Function
This example uses the objective function, ps_example, which is included with
the Genetic Algorithm and Direct Search Toolbox software. View the code
for the function by entering

type ps_example

The following figure shows a plot of the function.

2-6

Example: Finding the Minimum of a Function Using the GPS Algorithm

Finding the Minimum of the Function
To find the minimum of ps_example, do the following steps:

1 Enter

psearchtool

to open the Pattern Search Tool.

2 In the Objective function field of the Pattern Search Tool, enter
@ps_example.

3 In the Start point field, type [2.1 1.7].

Leave the fields in the Constraints pane blank because the problem is
unconstrained.

4 Click Start to run the pattern search.

The Status and results pane displays the results of the pattern search.

2-7

2 Getting Started with Direct Search

The reason the optimization terminated is that the mesh size became smaller
than the acceptable tolerance value for the mesh size, defined by the Mesh
tolerance parameter in the Stopping criteria pane. The minimum function
value is approximately –2. The Final point pane displays the point at which
the minimum occurs.

Plotting the Objective Function Values and Mesh Sizes
To see the performance of the pattern search, display plots of the best function
value and mesh size at each iteration. First, select the following check boxes
in the Plots pane:

• Best function value

• Mesh size

Then click Start to run the pattern search. This displays the following plots.

2-8

Example: Finding the Minimum of a Function Using the GPS Algorithm

The upper plot shows the objective function value of the best point at each
iteration. Typically, the objective function values improve rapidly at the early
iterations and then level off as they approach the optimal value.

The lower plot shows the mesh size at each iteration. The mesh size increases
after each successful iteration and decreases after each unsuccessful one,
explained in “How Pattern Search Works” on page 2-13.

2-9

2 Getting Started with Direct Search

Pattern Search Terminology

In this section...

“Patterns” on page 2-10

“Meshes” on page 2-11

“Polling” on page 2-11

“Expanding and Contracting” on page 2-12

Patterns
A pattern is a set of vectors {vi} that the pattern search algorithm uses to
determine which points to search at each iteration. The set {vi} is defined by
the number of independent variables in the objective function, N, and the
positive basis set. Two commonly used positive basis sets in pattern search
algorithms are the maximal basis, with 2N vectors, and the minimal basis,
with N+1 vectors.

With GPS, the collection of vectors that form the pattern are fixed-direction
vectors. For example, if there are three independent variables in the
optimization problem, the default for a 2N positive basis consists of the
following pattern vectors:

v v v
v v v

1 2 3

4 5 6

1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1

= = =
= − = − = −

[] [] []
[] [] []

An N+1 positive basis consists of the following default pattern vectors.

v v v
v

1 2 3

4

1 0 0 0 1 0 0 0 1
1 1 1

= = =
= − − −

[] [] []
[]

With MADS, the collection of vectors that form the pattern are randomly
selected by the algorithm. Depending on the poll method choice, the number
of vectors selected will be 2N or N+1. As in GPS, 2N vectors consist of N
vectors and their N negatives, while N+1 vectors consist of N vectors and one
that is the negative of the sum of the others.

2-10

Pattern Search Terminology

Meshes
At each step, the pattern search algorithm searches a set of points, called a
mesh, for a point that improves the objective function. The GPS and MADS
algorithms form the mesh by

1 Generating a set of vectors {di} by multiplying each pattern vector vi by a
scalar m. m is called the mesh size.

2 Adding the { }di to the current point—the point with the best objective
function value found at the previous step.

For example, using the GPS algorithm. suppose that:

• The current point is [1.6 3.4].

• The pattern consists of the vectors

v

v

v

v

1

2

3

4

1 0

0 1

1 0

0 1

= []
= []
= −[]
= −[]

• The current mesh size m is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the
current point to obtain the following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4]
[1.6 3.4] + 4*[0 1] = [1.6 7.4]
[1.6 3.4] + 4*[-1 0] = [-2.4 3.4]
[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction.

Polling
At each step, the algorithm polls the points in the current mesh by computing
their objective function values. When the Complete poll option has the
(default) setting Off, the algorithm stops polling the mesh points as soon as it

2-11

2 Getting Started with Direct Search

finds a point whose objective function value is less than that of the current
point. If this occurs, the poll is called successful and the point it finds becomes
the current point at the next iteration.

The algorithm only computes the mesh points and their objective function
values up to the point at which it stops the poll. If the algorithm fails to find a
point that improves the objective function, the poll is called unsuccessful and
the current point stays the same at the next iteration.

When the Complete poll option has the setting On, the algorithm computes
the objective function values at all mesh points. The algorithm then compares
the mesh point with the smallest objective function value to the current
point. If that mesh point has a smaller value than the current point, the
poll is successful.

Expanding and Contracting
After polling, the algorithm changes the value of the mesh size m. The
default is to multiply m by 2 after a successful poll, and by 0.5 after an
unsuccessful poll.

2-12

How Pattern Search Works

How Pattern Search Works

In this section...

“Context” on page 2-13

“Successful Polls” on page 2-13

“An Unsuccessful Poll” on page 2-16

“Displaying the Results at Each Iteration” on page 2-17

“More Iterations” on page 2-18

“Stopping Conditions for the Pattern Search” on page 2-19

Context
The pattern search algorithms find a sequence of points, x0, x1, x2, ... ,
that approaches an optimal point. The value of the objective function either
decreases or remains the same from each point in the sequence to the next.
This section explains how pattern search works for the function described in
“Example: Finding the Minimum of a Function Using the GPS Algorithm”
on page 2-6.

To simplify the explanation, this section describes how the generalized
pattern search (GPS) works using a maximal positive basis of 2N, with Scale
set to Off in Mesh options.

Successful Polls
The pattern search begins at the initial point x0 that you provide. In this
example, x0 = [2.1 1.7].

Iteration 1
At the first iteration, the mesh size is 1 and the GPS algorithm adds the
pattern vectors to the initial point x0 = [2.1 1.7] to compute the following
mesh points:

[1 0] + x0 = [3.1 1.7]
[0 1] + x0 = [2.1 2.7]
[-1 0] + x0 = [1.1 1.7]

2-13

2 Getting Started with Direct Search

[0 -1] + x0 = [2.1 0.7]

The algorithm computes the objective function at the mesh points in the order
shown above. The following figure shows the value of ps_example at the
initial point and mesh points.

1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

4.7824.63474.5146

5.6347

3.6347

Objective Function Values at Initial Point and Mesh Points

Initial point x0
Mesh points

�������	

����	������������	��������	��������������	

The algorithm polls the mesh points by computing their objective function
values until it finds one whose value is smaller than 4.6347, the value at x0.
In this case, the first such point it finds is [1.1 1.7], at which the value of
the objective function is 4.5146, so the poll at iteration 1 is successful. The
algorithm sets the next point in the sequence equal to

x1 = [1.1 1.7]

2-14

How Pattern Search Works

Note By default, the GPS pattern search algorithm stops the current
iteration as soon as it finds a mesh point whose fitness value is smaller than
that of the current point. Consequently, the algorithm might not poll all the
mesh points. You can make the algorithm poll all the mesh points by setting
Complete poll to On.

Iteration 2
After a successful poll, the algorithm multiplies the current mesh size by 2,
the default value of Expansion factor in the Mesh options pane. Because
the initial mesh size is 1, at the second iteration the mesh size is 2. The mesh
at iteration 2 contains the following points:

2*[1 0] + x1 = [3.1 1.7]
2*[0 1] + x1 = [1.1 3.7]
2*[-1 0] + x1 = [-0.9 1.7]
2*[0 -1] + x1 = [1.1 -0.3]

The following figure shows the point x1 and the mesh points, together with
the corresponding values of ps_example.

2-15

2 Getting Started with Direct Search

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5146 4.72823.25

6.5416

3.1146

Objective Function Values at x1 and Mesh Points

x1
Mesh points

The algorithm polls the mesh points until it finds one whose value is smaller
than 4.5146, the value at x1. The first such point it finds is [-0.9 1.7], at
which the value of the objective function is 3.25, so the poll at iteration 2 is
again successful. The algorithm sets the second point in the sequence equal to

x2 = [-0.9 1.7]

Because the poll is successful, the algorithm multiplies the current mesh size
by 2 to get a mesh size of 4 at the third iteration.

An Unsuccessful Poll
By the fourth iteration, the current point is

x3 = [-4.9 1.7]

and the mesh size is 8, so the mesh consists of the points

8*[1 0] + x3 = [3.1 1.7]
8*[0 1] + x3 = [-4.9 9.7]
8*[-1 0] + x3 = [-12.9 1.7]

2-16

How Pattern Search Works

8*[0 -1] + x3 = [-4.9 -1.3]

The following figure shows the mesh points and their objective function values.

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

8

10

−0.2649 4.728264.11

7.7351

4.3351

Objective Function Values at x3 and Mesh Points

x3
Mesh points

At this iteration, none of the mesh points has a smaller objective function
value than the value at x3, so the poll is unsuccessful. In this case, the
algorithm does not change the current point at the next iteration. That is,

x4 = x3;

At the next iteration, the algorithm multiplies the current mesh size by
0.5, the default value of Contraction factor in the Mesh options pane, so
that the mesh size at the next iteration is 4. The algorithm then polls with
a smaller mesh size.

Displaying the Results at Each Iteration
You can display the results of the pattern search at each iteration by setting
Level of display to Iterative in the Display to command window

2-17

2 Getting Started with Direct Search

options. This enables you to evaluate the progress of the pattern search and
to make changes to options if necessary.

With this setting, the pattern search displays information about each iteration
at the command line. The first four lines of the display are

Iter f-count f(x) MeshSize Method
0 1 4.63474 1
1 4 4.51464 2 Successful Poll
2 7 3.25 4 Successful Poll
3 10 -0.264905 8 Successful Poll

The entry Successful Poll below Method indicates that the current iteration
was successful. For example, the poll at iteration 2 is successful. As a result,
the objective function value of the point computed at iteration 2, displayed
below f(x), is less than the value at iteration 1.

At iteration 3, the entry Refine Mesh below Method tells you that the poll is
unsuccessful. As a result, the function value at iteration 4 remains unchanged
from iteration 3.

By default, the pattern search doubles the mesh size after each successful poll
and halves it after each unsuccessful poll.

More Iterations
The pattern search performs 88 iterations before stopping. The following
plot shows the points in the sequence computed in the first 13 iterations of
the pattern search.

2-18

How Pattern Search Works

−6 −5 −4 −3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

123

6

10
13

Points at First 13 Iterations of Pattern Search

0

The numbers below the points indicate the first iteration at which
the algorithm finds the point. The plot only shows iteration numbers
corresponding to successful polls, because the best point doesn’t change after
an unsuccessful poll. For example, the best point at iterations 4 and 5 is
the same as at iteration 3.

Stopping Conditions for the Pattern Search
The criteria for stopping the pattern search algorithm are listed in the
Stopping criteria section of the Pattern Search Tool.

2-19

2 Getting Started with Direct Search

The algorithm stops when any of the following conditions occurs:

• The mesh size is less than Mesh tolerance.

• The number of iterations performed by the algorithm reaches the value of
Max iteration.

• The total number of objective function evaluations performed by the
algorithm reaches the value of Max function evaluations.

• The time, in seconds, the algorithm runs until it reaches the value of Time
limit.

• The distance between the point found in two consecutive iterations and the
mesh size are both less than X tolerance.

• The change in the objective function in two consecutive iterations and the
mesh size are both less than Function tolerance.

Neither the Bind tolerance nor the Nonlinear constraint tolerance are
used as stopping criterion. The Bind tolerance option identifies active
constraints for constrained problems, and the Nonlinear constraint
tolerance determines the feasibility with respect to nonlinear constraints.

2-20

How Pattern Search Works

The MADS algorithm uses the relationship between the mesh size, m, and
an additional parameter, called the poll parameter, p, to determine the

stopping criteria. For positive basis N+1, the poll parameter is N mΔ , and

for positive basis 2N, the poll parameter is Δm . The relationship for MADS
stopping criteria is m ≤ Mesh tolerance.

2-21

2 Getting Started with Direct Search

Description of the Nonlinear Constraint Solver
The pattern search algorithm uses the Augmented Lagrangian Pattern Search
(ALPS) algorithm to solve nonlinear constraint problems. The optimization
problem solved by the ALPS algorithm is

min ()
x

f x

such that

C x i m

C x i m mt

Ax b
A x beq

LB x UB

i

i

eq

() ,
() ,

≤ =
= = +

≤
=

≤ ≤

0 1
0 1

…
…

where C(x) represents the nonlinear inequality and equality constraints, m is
the number of nonlinear inequality constraints, and mt is the total number of
nonlinear constraints.

The ALPS algorithm attempts to solve a nonlinear optimization problem
with nonlinear constraints, linear constraints, and bounds. In this approach,
bounds and linear constraints are handled separately from nonlinear
constraints. A subproblem is formulated by combining the objective function
and nonlinear constraint function using the Lagrangian and the penalty
parameters. A sequence of such optimization problems are approximately
minimized using a pattern search algorithm such that the linear constraints
and bounds are satisfied.

A subproblem formulation is defined as

Θ(, , ,) () log(()) ()x s f x s s c x c x ci
i

m

i i i i
i m

mt

iλ ρ λ λ
ρ

= − − + +
= = +
∑ ∑

1 1 2 ii
i m

mt
x

= +
∑

1

2()

where

2-22

Description of the Nonlinear Constraint Solver

• the components λi of the vector λ are nonnegative and are known as
Lagrange multiplier estimates

• the elements si of the vector s are nonnegative shifts

• ρ is the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter
(InitialPenalty).

The pattern search algorithm minimizes a sequence of the subproblem,
which is an approximation of the original problem. When the subproblem
is minimized to a required accuracy and satisfies feasibility conditions,
the Lagrangian estimates are updated. Otherwise, the penalty parameter
is increased by a penalty factor (PenaltyFactor). This results in a new
subproblem formulation and minimization problem. These steps are repeated
until the stopping criteria are met.

For a complete description of the algorithm, see the following references:

[1] Lewis, Robert Michael and Virginia Torczon, “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization with
General Constraints and Simple Bounds”, SIAM Journal on Optimization,
Volume 12, Number 4, 2002, 1075–1089.

[2] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization with
General Constraints and Simple Bounds”, SIAM Journal on Numerical
Analysis, Volume 28, Number 2, 1991, 545–572.

[3] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization with
General Constraints and Simple Bounds”, Mathematics of Computation,
Volume 66, Number 217, 1997, 261–288.

2-23

2 Getting Started with Direct Search

2-24

3

Getting Started with the
Genetic Algorithm

What Is the Genetic Algorithm?
(p. 3-2)

Introduces the genetic algorithm.

Using the Genetic Algorithm,
Command Line or Tool (p. 3-3)

Explains how to use the Genetic
Algorithm Tool.

Example: Rastrigin’s Function
(p. 3-7)

Presents an example of solving an
optimization problem using the
genetic algorithm.

Some Genetic Algorithm
Terminology (p. 3-16)

Explains some basic terminology for
the genetic algorithm.

How the Genetic Algorithm Works
(p. 3-19)

Presents an overview of how the
genetic algorithm works.

Description of the Nonlinear
Constraint Solver (p. 3-26)

Explains the Augmented Lagrangian
Genetic Algorithm (ALGA).

3 Getting Started with the Genetic Algorithm

What Is the Genetic Algorithm?
The genetic algorithm is a method for solving both constrained and
unconstrained optimization problems that is based on natural selection, the
process that drives biological evolution. The genetic algorithm repeatedly
modifies a population of individual solutions. At each step, the genetic
algorithm selects individuals at random from the current population to be
parents and uses them to produce the children for the next generation. Over
successive generations, the population "evolves" toward an optimal solution.
You can apply the genetic algorithm to solve a variety of optimization problems
that are not well suited for standard optimization algorithms, including
problems in which the objective function is discontinuous, nondifferentiable,
stochastic, or highly nonlinear.

The genetic algorithm uses three main types of rules at each step to create
the next generation from the current population:

• Selection rules select the individuals, called parents, that contribute to the
population at the next generation.

• Crossover rules combine two parents to form children for the next
generation.

• Mutation rules apply random changes to individual parents to form
children.

The genetic algorithm differs from a classical, derivative-based, optimization
algorithm in two main ways, as summarized in the following table.

Classical Algorithm Genetic Algorithm

Generates a single point at each
iteration. The sequence of points
approaches an optimal solution.

Generates a population of points at
each iteration. The best point in the
population approaches an optimal
solution.

Selects the next point in the sequence
by a deterministic computation.

Selects the next population by
computation which uses random
number generators.

3-2

Using the Genetic Algorithm, Command Line or Tool

Using the Genetic Algorithm, Command Line or Tool

In this section...

“Calling the Function ga at the Command Line” on page 3-3

“Using the Genetic Algorithm Tool” on page 3-4

Calling the Function ga at the Command Line
To use the genetic algorithm at the command line, call the genetic algorithm
function ga with the syntax

[x fval] = ga(@fitnessfun, nvars, options)

where

• @fitnessfun is a handle to the fitness function.

• nvars is the number of independent variables for the fitness function.

• options is a structure containing options for the genetic algorithm. If you
do not pass in this argument, ga uses its default options.

The results are given by

• x — Point at which the final value is attained

• fval — Final value of the fitness function

Using the function ga is convenient if you want to

• Return results directly to the MATLAB workspace

• Run the genetic algorithm multiple times with different options, by calling
ga from an M-file

“Using the Genetic Algorithm from the Command Line” on page 6-23 provides
a detailed description of using the function ga and creating the options
structure.

3-3

3 Getting Started with the Genetic Algorithm

Using the Genetic Algorithm Tool
The Genetic Algorithm Tool is a graphical user interface that enables you to
use the genetic algorithm without working at the command line. To open
it, enter

gatool

at the MATLAB command prompt. The tool opens as shown here.

3-4

Using the Genetic Algorithm, Command Line or Tool

To use the Genetic Algorithm Tool, you must first enter the following
information:

• Fitness function — The objective function you want to minimize. Enter
the fitness function in the form @fitnessfun, where fitnessfun.m is an

3-5

3 Getting Started with the Genetic Algorithm

M-file that computes the fitness function. “Writing M-Files for Functions
You Want to Optimize” on page 1-3 explains how write this M-file. The @
sign creates a function handle to fitnessfun.

• Number of variables — The length of the input vector to the fitness
function. For the function my_fun described in “Writing M-Files for
Functions You Want to Optimize” on page 1-3, you would enter 2.

You can enter constraints or a nonlinear constraint function for the problem
in the Constraints pane. If the problem is unconstrained, leave these fields
blank.

To run the genetic algorithm, click the Start button. The tool displays the
results of the optimization in the Status and results pane.

You can change the options for the genetic algorithm in the Options pane.
To view the options in one of the categories listed in the pane, click the +
sign next to it.

For more information,

• See “Overview of the Genetic Algorithm Tool” on page 6-2 for a detailed
description of the tool.

• See “Example: Rastrigin’s Function” on page 3-7 for an example of using
the tool.

3-6

Example: Rastrigin’s Function

Example: Rastrigin’s Function

In this section...

“Rastrigin’s Function” on page 3-7

“Finding the Minimum of Rastrigin’s Function” on page 3-9

“Finding the Minimum from the Command Line” on page 3-11

“Displaying Plots” on page 3-12

Rastrigin’s Function
This section presents an example that shows how to find the minimum of
Rastrigin’s function, a function that is often used to test the genetic algorithm.

For two independent variables, Rastrigin’s function is defined as

The toolbox contains an M-file, rastriginsfcn.m, that computes the values of
Rastrigin’s function. The following figure shows a plot of Rastrigin’s function.

3-7

3 Getting Started with the Genetic Algorithm

�
	��
����������������

As the plot shows, Rastrigin’s function has many local minima—the “valleys”
in the plot. However, the function has just one global minimum, which occurs
at the point [0 0] in the x-y plane, as indicated by the vertical line in the plot,
where the value of the function is 0. At any local minimum other than [0
0], the value of Rastrigin’s function is greater than 0. The farther the local
minimum is from the origin, the larger the value of the function is at that
point.

Rastrigin’s function is often used to test the genetic algorithm, because its
many local minima make it difficult for standard, gradient-based methods
to find the global minimum.

The following contour plot of Rastrigin’s function shows the alternating
maxima and minima.

3-8

Example: Rastrigin’s Function

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

�	��
�������

�	��
������

�
	��
����������������

Finding the Minimum of Rastrigin’s Function
This section explains how to find the minimum of Rastrigin’s function using
the genetic algorithm.

Note Because the genetic algorithm uses random number generators, the
algorithm returns slightly different results each time you run it.

To find the minimum, do the following steps:

1 Enter gatool at the command line to open the Genetic Algorithm Tool.

2 Enter the following in the Genetic Algorithm Tool:

3-9

3 Getting Started with the Genetic Algorithm

• In the Fitness function field, enter @rastriginsfcn.

• In the Number of variables field, enter 2, the number of independent
variables for Rastrigin’s function.

The Fitness function and Number of variables fields should appear
as shown in the following figure.

3 Click the Start button in the Run solver pane, as shown in the following
figure.

While the algorithm is running, the Current generation field displays
the number of the current generation. You can temporarily pause the
algorithm by clicking the Pause button. When you do so, the button name
changes to Resume. To resume the algorithm from the point at which
you paused it, click Resume.

When the algorithm is finished, the Status and results pane appears as
shown in the following figure.

The Status and results pane displays the following information:

3-10

Example: Rastrigin’s Function

• The final value of the fitness function when the algorithm terminated:

Function value: 0.5461846729884883

Note that the value shown is very close to the actual minimum value
of Rastrigin’s function, which is 0. “Genetic Algorithm Examples” on
page 6-32 describes some ways to get a result that is closer to the actual
minimum.

• The reason the algorithm terminated.

Optimization terminated:
average change in the fitness value less than options.TolFun.

• The final point, which in this example is [0.00218 0.05266].

Finding the Minimum from the Command Line
To find the minimum of Rastrigin’s function from the command line, enter

[x fval exitflag] = ga(@rastriginsfcn, 2)

This returns

Optimization terminated:
average change in the fitness value less than options.TolFun.

3-11

3 Getting Started with the Genetic Algorithm

x =

0.0229 0.0106

fval =

0.1258

exitflag =

1

where

• x is the final point returned by the algorithm.

• fval is the fitness function value at the final point.

• exitflag is integer value corresponding to the reason that the algorithm
terminated.

Note Because the genetic algorithm uses random number generators, the
algorithm returns slightly different results each time you run it.

Displaying Plots
The Plots pane enables you to display various plots that provide information
about the genetic algorithm while it is running. This information can help you
change options to improve the performance of the algorithm. For example, to
plot the best and mean values of the fitness function at each generation, select
the box next to Best fitness, as shown in the following figure.

3-12

Example: Rastrigin’s Function

When you click Start, the Genetic Algorithm Tool displays a plot of the
best and mean values of the fitness function at each generation. When the
algorithm stops, the plot appears as shown in the following figure.

The points at the bottom of the plot denote the best fitness values, while
the points above them denote the averages of the fitness values in each
generation. The plot also displays the best and mean values in the current
generation numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you
can change the scaling of the y-axis in the plot to logarithmic scaling. To do so,

3-13

3 Getting Started with the Genetic Algorithm

1 Select Axes Properties from the Edit menu in the plot window to open
the Property Editor attached to your figure window as shown below.

2 Click the Y tab.

3 In the Scale pane, select Log.

The plot now appears as shown in the following figure.

3-14

Example: Rastrigin’s Function

10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

generation

Best: 0.0067796 Mean: 0.014788

Typically, the best fitness value improves rapidly in the early generations,
when the individuals are farther from the optimum. The best fitness value
improves more slowly in later generations, whose populations are closer
to the optimal point.

3-15

3 Getting Started with the Genetic Algorithm

Some Genetic Algorithm Terminology

In this section...

“Fitness Functions” on page 3-16

“Individuals” on page 3-16

“Populations and Generations” on page 3-17

“Diversity” on page 3-17

“Fitness Values and Best Fitness Values” on page 3-17

“Parents and Children” on page 3-18

Fitness Functions
The fitness function is the function you want to optimize. For standard
optimization algorithms, this is known as the objective function. The toolbox
tries to find the minimum of the fitness function.

You can write the fitness function as an M-file and pass it as a function handle
input argument to the main genetic algorithm function.

Individuals
An individual is any point to which you can apply the fitness function. The
value of the fitness function for an individual is its score. For example, if
the fitness function is

the vector (2, -3, 1), whose length is the number of variables in the problem, is
an individual. The score of the individual (2, -3, 1) is f(2, -3, 1) = 51.

An individual is sometimes referred to as a genome and the vector entries of
an individual as genes.

3-16

Some Genetic Algorithm Terminology

Populations and Generations
A population is an array of individuals. For example, if the size of the
population is 100 and the number of variables in the fitness function is 3,
you represent the population by a 100-by-3 matrix. The same individual can
appear more than once in the population. For example, the individual (2, -3,
1) can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations
on the current population to produce a new population. Each successive
population is called a new generation.

Diversity
Diversity refers to the average distance between individuals in a population.
A population has high diversity if the average distance is large; otherwise it
has low diversity. In the following figure, the population on the left has high
diversity, while the population on the right has low diversity.

Diversity is essential to the genetic algorithm because it enables the algorithm
to search a larger region of the space.

Fitness Values and Best Fitness Values
The fitness value of an individual is the value of the fitness function for that
individual. Because the toolbox finds the minimum of the fitness function,

3-17

3 Getting Started with the Genetic Algorithm

the best fitness value for a population is the smallest fitness value for any
individual in the population.

Parents and Children
To create the next generation, the genetic algorithm selects certain individuals
in the current population, called parents, and uses them to create individuals
in the next generation, called children. Typically, the algorithm is more likely
to select parents that have better fitness values.

3-18

How the Genetic Algorithm Works

How the Genetic Algorithm Works

In this section...

“Outline of the Algorithm” on page 3-19

“Initial Population” on page 3-20

“Creating the Next Generation” on page 3-21

“Plots of Later Generations” on page 3-23

“Stopping Conditions for the Algorithm” on page 3-23

Outline of the Algorithm
The following outline summarizes how the genetic algorithm works:

1 The algorithm begins by creating a random initial population.

2 The algorithm then creates a sequence of new populations. At each step,
the algorithm uses the individuals in the current generation to create the
next population. To create the new population, the algorithm performs
the following steps:

a Scores each member of the current population by computing its fitness
value.

b Scales the raw fitness scores to convert them into a more usable range of
values.

c Selects members, called parents, based on their fitness.

d Some of the individuals in the current population that have lower fitness
are chosen as elite. These elite individuals are passed to the next
population.

e Produces children from the parents. Children are produced either by
making random changes to a single parent—mutation—or by combining
the vector entries of a pair of parents—crossover.

f Replaces the current population with the children to form the next
generation.

3-19

3 Getting Started with the Genetic Algorithm

3 The algorithm stops when one of the stopping criteria is met. See “Stopping
Conditions for the Algorithm” on page 3-23.

Initial Population
The algorithm begins by creating a random initial population, as shown in
the following figure.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Initial population

In this example, the initial population contains 20 individuals, which is the
default value of Population size in the Population options. Note that all
the individuals in the initial population lie in the upper-right quadrant of the
picture, that is, their coordinates lie between 0 and 1, because the default
value of Initial range in the Population options is [0;1].

If you know approximately where the minimal point for a function lies, you
should set Initial range so that the point lies near the middle of that range.
For example, if you believe that the minimal point for Rastrigin’s function is
near the point [0 0], you could set Initial range to be [-1;1]. However, as
this example shows, the genetic algorithm can find the minimum even with a
less than optimal choice for Initial range.

3-20

How the Genetic Algorithm Works

Creating the Next Generation
At each step, the genetic algorithm uses the current population to create the
children that make up the next generation. The algorithm selects a group of
individuals in the current population, called parents, who contribute their
genes—the entries of their vectors—to their children. The algorithm usually
selects individuals that have better fitness values as parents. You can specify
the function that the algorithm uses to select the parents in the Selection
function field in the Selection options.

The genetic algorithm creates three types of children for the next generation:

• Elite children are the individuals in the current generation with the
best fitness values. These individuals automatically survive to the next
generation.

• Crossover children are created by combining the vectors of a pair of parents.

• Mutation children are created by introducing random changes, or
mutations, to a single parent.

The following schematic diagram illustrates the three types of children.

3-21

3 Getting Started with the Genetic Algorithm

“Mutation and Crossover” on page 6-41 explains how to specify the number of
children of each type that the algorithm generates and the functions it uses
to perform crossover and mutation.

The following sections explain how the algorithm creates crossover and
mutation children.

Crossover Children
The algorithm creates crossover children by combining pairs of parents in
the current population. At each coordinate of the child vector, the default
crossover function randomly selects an entry, or gene, at the same coordinate
from one of the two parents and assigns it to the child.

Mutation Children
The algorithm creates mutation children by randomly changing the genes of
individual parents. By default, the algorithm adds a random vector from a
Gaussian distribution to the parent.

The following figure shows the children of the initial population, that is, the
population at the second generation, and indicates whether they are elite,
crossover, or mutation children.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Elite children
Crossover children
Mutation children

3-22

How the Genetic Algorithm Works

Plots of Later Generations
The following figure shows the populations at iterations 60, 80, 95, and 100.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Iteration 60

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Iteration 80

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Iteration 95

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Iteration 100

As the number of generations increases, the individuals in the population get
closer together and approach the minimum point [0 0].

Stopping Conditions for the Algorithm
The genetic algorithm uses the following conditions to determine when to stop:

• Generations — The algorithm stops when the number of generations
reaches the value of Generations.

3-23

3 Getting Started with the Genetic Algorithm

• Time limit — The algorithm stops after running for an amount of time in
seconds equal to Time limit.

• Fitness limit — The algorithm stops when the value of the fitness function
for the best point in the current population is less than or equal to Fitness
limit.

• Stall generations — The algorithm stops when the weighted average
change in the fitness function value over Stall generations is less than
Function tolerance.

• Stall time limit — The algorithm stops if there is no improvement in
the objective function during an interval of time in seconds equal to Stall
time limit.

• Function Tolerance — The algorithm runs until the weighted average
change in the fitness function value over Stall generations is less than
Function tolerance.

• Nonlinear constraint tolerance — The Nonlinear constraint
tolerance is not used as stopping criterion. It is used to determine the
feasibility with respect to nonlinear constraints.

The algorithm stops as soon as any one of these conditions is met. You can
specify the values of these criteria in the Stopping criteria pane in the
Genetic Algorithm Tool. The default values are shown in the figure below.

3-24

How the Genetic Algorithm Works

When you run the genetic algorithm, the Status and results panel displays
the criterion that caused the algorithm to stop.

The options Stall time limit and Time limit prevent the algorithm from
running too long. If the algorithm stops due to one of these conditions, you
might improve your results by increasing the values of Stall time limit and
Time limit.

3-25

3 Getting Started with the Genetic Algorithm

Description of the Nonlinear Constraint Solver
The genetic algorithm uses the Augmented Lagrangian Genetic Algorithm
(ALGA) to solve nonlinear constraint problems. The optimization problem
solved by the ALGA algorithm is

min ()
x

f x

such that

C x i m

C x i m mt

Ax b
A x beq

LB x UB

i

i

eq

() ,
() ,

≤ =
= = +

≤
=

≤ ≤

0 1
0 1

…
…

where C(x) represents the nonlinear inequality and equality constraints, m is
the number of nonlinear inequality constraints, and mt is the total number of
nonlinear constraints.

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a
nonlinear optimization problem with nonlinear constraints, linear constraints,
and bounds. In this approach, bounds and linear constraints are handled
separately from nonlinear constraints. A subproblem is formulated by
combining the fitness function and nonlinear constraint function using the
Lagrangian and the penalty parameters. A sequence of such optimization
problems are approximately minimized using the genetic algorithm such that
the linear constraints and bounds are satisfied.

A subproblem formulation is defined as

Θ(, , ,) () log(()) ()x s f x s s c x c x ci
i

m

i i i i
i m

mt

iλ ρ λ λ
ρ

= − − + +
= = +
∑ ∑

1 1 2 ii
i m

mt
x

= +
∑

1

2()

where the components λi of the vector λ are nonnegative and are known as
Lagrange multiplier estimates. The elements si of the vector s are nonnegative

3-26

Description of the Nonlinear Constraint Solver

shifts, and ρ is the positive penalty parameter. The algorithm begins by using
an initial value for the penalty parameter (InitialPenalty).

The genetic algorithm minimizes a sequence of the subproblem, which is an
approximation of the original problem. When the subproblem is minimized
to a required accuracy and satisfies feasibility conditions, the Lagrangian
estimates are updated. Otherwise, the penalty parameter is increased
by a penalty factor (PenaltyFactor). This results in a new subproblem
formulation and minimization problem. These steps are repeated until the
stopping criteria are met. For a complete description of the algorithm, see the
following references:

• Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Algorithm for Optimization with General
Constraints and Simple Bounds,” SIAM Journal on Numerical Analysis,
Volume 28, Number 2, pages 545–572, 1991.

• Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Barrier Algorithm for Optimization with General
Inequality Constraints and Simple Bounds,” Mathematics of Computation,
Volume 66, Number 217, pages 261–288, 1997.

3-27

3 Getting Started with the Genetic Algorithm

3-28

4

Getting Started with
Simulated Annealing and
Threshold Acceptance

What Are Simulated Annealing and
Threshold Acceptance? (p. 4-2)

Introduces simulated annealing and
threshold acceptance.

Calling the Simulated Annealing
and Threshold Acceptance Solvers
(p. 4-3)

Explains how to use simulated
annealing and threshold acceptance.

Example: Minimizing De Jong’s
Fifth Function (p. 4-4)

Presents an example of solving
an optimization problem using
simulated annealing.

Some Simulated Annealing and
Threshold Acceptance Terminology
(p. 4-6)

Explains some basic terminology for
simulated annealing and threshold
acceptance.

How Simulated Annealing and
Threshold Acceptance Work (p. 4-8)

Presents an overview of how the
simulated annealing algorithm
works.

4 Getting Started with Simulated Annealing and Threshold Acceptance

What Are Simulated Annealing and Threshold Acceptance?
Simulated annealing is a method for solving unconstrained and
bound-constrained optimization problems. The method models the physical
process of heating a material and then slowly lowering the temperature to
decrease defects, thus minimizing the system energy.

At each iteration of the simulated annealing algorithm, a new point is
randomly generated. The distance of the new point from the current point, or
the extent of the search, is based on a probability distribution with a scale
proportional to the temperature. The algorithm accepts all new points that
lower the objective, but also, with a certain probability, points that raise the
objective. By accepting points that raise the objective, the algorithm avoids
being trapped in local minima, and is able to explore globally for more possible
solutions. An annealing schedule is selected to systematically decrease the
temperature as the algorithm proceeds. As the temperature decreases, the
algorithm reduces the extent of its search to converge to a minimum.

Threshold acceptance uses a similar approach, but instead of accepting
new points that raise the objective with a certain probability, it accepts all
new points below a fixed threshold. The threshold is then systematically
lowered, just as the temperature is lowered in an annealing schedule.
Because threshold acceptance avoids the probabilistic acceptance calculations
of simulated annealing, it may locate an optimizer faster than simulated
annealing.

4-2

Calling the Simulated Annealing and Threshold Acceptance Solvers

Calling the Simulated Annealing and Threshold Acceptance
Solvers

This section provides a brief introduction to using the simulated annealing
and threshold acceptance at the command line. To simplify the presentation,
this section uses only the simulated annealing function simulannealbnd. The
threshold acceptance function threshacceptbnd has the same syntax.

To call the simulated annealing function at the command line, use the syntax

[x fval] = simulannealbnd(@objfun, x0, lb, ub, options)

where

• @objfun is a function handle to the objective function.

• x0 is an initial guess for the optimizer.

• lb and ub are lower and upper bound constraints, respectively, on x.

• options is a structure containing options for the algorithm. If you do not
pass in this argument, simulannealbnd uses its default options.

The results are given by:

• x — Final point returned by the solver

• fval — Value of the objective function at x

The command-line function simulannealbnd is convenient if you want to

• Return results directly to the MATLAB workspace.

• Run the simulated annealing algorithm multiple times with different
options by calling simulannealbnd from an M-file.

“Using the Simulated Annealing and Threshold Acceptance Algorithms from
the Command Line” on page 7-2 provides a detailed description of using the
function simulannealbnd and creating the options structure.

4-3

4 Getting Started with Simulated Annealing and Threshold Acceptance

Example: Minimizing De Jong’s Fifth Function
This section presents an example that shows how to find the minimum of the
function using simulated annealing.

De Jong’s fifth function is a two-dimensional function with many (25) local
minima:

dejong5fcn

Many standard optimization algorithms get stuck in local minima. Because
the simulated annealing algorithm performs a wide random search, the
chance of being trapped in local minima is decreased.

To run the simulated annealing algorithm without constraints, call
simulannealbnd at the command line using the objective function in
dejong5fcn.m, referenced by anonymous function pointer:

4-4

Example: Minimizing De Jong’s Fifth Function

fun = @dejong5fcn;
[x fval] = simulannealbnd(fun, [0 0])

This returns

x =
-31.9779 -31.9595

fval =
0.9980

where

• x is the final point returned by the algorithm.

• fval is the objective function value at the final point.

Note Because simulated annealing and threshold acceptance both use
random number generators, each time you run these algorithms you may
get different results. See “Reproducing Your Results” on page 7-5 for more
information.

4-5

4 Getting Started with Simulated Annealing and Threshold Acceptance

Some Simulated Annealing and Threshold Acceptance
Terminology

In this section...

“Objective Function” on page 4-6

“Temperature” on page 4-6

“Annealing Schedule” on page 4-6

“Reannealing” on page 4-6

Objective Function
The objective function is the function you want to optimize. The algorithms in
the toolbox attempt to find the minimum of the objective function. Write the
objective function as an M-file and pass it to the solver as a function handle.

Temperature
The temperature is the control parameter in simulated annealing that is
decreased gradually as the algorithm proceeds. It determines the probability
of accepting a worse solution at any step and is used to limit the extent of the
search in a given dimension. You can specify the initial temperature as an
integer in the InitialTemperature option, and the annealing schedule as a
function to the TemperatureFcn option.

Annealing Schedule
The annealing schedule is the rate by which the temperature is decreased
as the algorithm proceeds. The slower the rate of decrease, the better the
chances are of finding an optimal solution, but the longer the run time.
You can specify the temperature schedule as a function handle with the
TemperatureFcn option.

Reannealing
Annealing is the technique of closely controlling the temperature when cooling
a material to ensure that it is brought to an optimal state. Reannealing raises
the temperature after a certain number of new points have been accepted,

4-6

Some Simulated Annealing and Threshold Acceptance Terminology

and starts the search again at the higher temperature. Reannealing avoids
getting caught at local minima. You specify the reannealing schedule with the
ReannealInterval option.

4-7

4 Getting Started with Simulated Annealing and Threshold Acceptance

How Simulated Annealing and Threshold Acceptance
Work

In this section...

“Outline of the Algorithm” on page 4-8

“Stopping Conditions for the Algorithm” on page 4-9

Outline of the Algorithm
The following is an outline of the steps performed for both the simulated
annealing and threshold acceptance algorithms:

1 The algorithm begins by randomly generating a new point. The distance
of the new point from the current point, or the extent of the search, is
determined by a probability distribution with a scale proportional to the
current temperature.

2 The algorithm determines whether the new point is better or worse than
the current point. If the new point is better than the current point, it
becomes the next point. If the new point is worse than the current point,
the algorithm may still make it the next point. Simulated annealing
accepts a worse point based on an acceptance probability. Threshold
acceptance accepts a worse point if the objective function is raised by less
than a fixed threshold.

3 The algorithm systematically lowers the temperature and (for threshold
acceptance) the threshold, storing the best point found so far.

4 Reannealing is performed after a certain number of points
(ReannealInterval) are accepted by the solver. Reannealing raises the
temperature in each dimension, depending on sensitivity information. The
search is resumed with the new temperature values.

5 The algorithm stops when the average change in the objective function is
very small, or when any other stopping criteria are met. See “Stopping
Conditions for the Algorithm” on page 4-9.

4-8

How Simulated Annealing and Threshold Acceptance Work

Stopping Conditions for the Algorithm
The simulated annealing and threshold acceptance algorithms use the
following conditions to determine when to stop:

• TolFun — The algorithm runs until the average change in value of the
objective function in StallIterLim iterations is less than TolFun. The
default value is 1e-6.

• MaxIter — The algorithm stops if the number of iterations exceeds this
maximum number of iterations. You can specify the maximum number of
iterations as a positive integer or Inf. Inf is the default.

• MaxFunEval specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds
the maximum number of function evaluations. The allowed maximum is
3000*numberofvariables.

• TimeLimit specifies the maximum time in seconds the algorithm runs
before stopping.

• ObjectiveLimit — The algorithm stops if the best objective function value
is less than or equal to the value of ObjectiveLimit.

4-9

4 Getting Started with Simulated Annealing and Threshold Acceptance

4-10

5

Using Direct Search

Overview of the Pattern Search Tool
(GUI) (p. 5-2)

Provides an overview of the Pattern
Search Tool.

Performing a Pattern Search from
the Command Line (p. 5-19)

Explains how to perform a pattern
search from the command line.

Pattern Search Examples: Setting
Options (p. 5-25)

Explains how to set options for a
pattern search.

Parameterizing Functions Called by
patternsearch (p. 5-52)

Explains how to write functions with
additional parameters.

5 Using Direct Search

Overview of the Pattern Search Tool (GUI)

In this section...

“Opening the Pattern Search Tool” on page 5-2

“Defining a Problem in the Pattern Search Tool” on page 5-3

“Running a Pattern Search” on page 5-4

“Example — A Linearly Constrained Problem” on page 5-5

“Pausing and Stopping the Algorithm” on page 5-8

“Displaying Plots” on page 5-8

“Example — Working with a Custom Plot Function” on page 5-10

“Setting Options in the Pattern Search Tool” on page 5-14

“Importing and Exporting Options and Problems” on page 5-15

“Generating an M-File” on page 5-18

Opening the Pattern Search Tool
To open the tool, enter

psearchtool

at the MATLAB prompt. This opens the Pattern Search Tool, as shown here.

5-2

Overview of the Pattern Search Tool (GUI)

Defining a Problem in the Pattern Search Tool
You can define the problem you want to solve using the following fields:

• Objective function — The function you want to minimize. Enter a handle
to an M-file function that computes the objective function. “Writing M-Files
for Functions You Want to Optimize” on page 1-3 describes how to write
the M-file.

• Start point — The starting point for the pattern search algorithm.

The following figure shows these fields for the example described in “Example:
Finding the Minimum of a Function Using the GPS Algorithm” on page 2-6.

5-3

5 Using Direct Search

Constrained Problems
You can enter any constraints for the problem in the following fields in the
Constraints pane:

• Linear inequalities — Enter the following for inequality constraints of
the form :

- Enter the matrix A in the A = field.

- Enter the vector b in the b = field.

• Linear equalities — Enter the following for equality constraints of the
form :

- Enter the matrix Aeq in the Aeq = field.

- Enter the vector beq in the beq = field.

• Bounds — Enter the following information for bounds constraints of the
form and :

- Enter the vector lb for the lower bound in the Lower = field.

- Enter the vector ub in the Upper = field.

Leave the fields that correspond to constraints, such as the Nonlinear
constraint function field which does not appear in the problem, empty.

Running a Pattern Search
To run a pattern search, click Start in the Run solver pane. When you do so,

• The Current iteration field displays the number of the current iteration.

5-4

Overview of the Pattern Search Tool (GUI)

• The Status and results pane displays the message Pattern search
running.

When the pattern search terminates, the Status and results pane displays

- The message Pattern search terminated.

- The objective function value at the final point

- The reason the pattern search terminated

• The Final Point field displays coordinates of the final point.

The following figure shows this information displayed when you run the
example in “Example: Finding the Minimum of a Function Using the GPS
Algorithm” on page 2-6.

Example — A Linearly Constrained Problem
This section presents an example of performing a pattern search on a
constrained minimization problem. The example minimizes the function

where

5-5

5 Using Direct Search

subject to the constraints

where

Performing a Pattern Search on the Example
To perform a pattern search on the example, first enter

psearchtool

to open the Pattern Search Tool. Then type the following function in the
Objective function field:

@lincontest7

This is an M-file included in the toolbox that computes the objective function
for the example. Because the matrices and vectors defining the starting point

5-6

Overview of the Pattern Search Tool (GUI)

and constraints are large, it is more convenient to set their values as variables
in the MATLAB workspace first and then enter the variable names in the
Pattern Search Tool. To do so, enter

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
beq = [84 62 65 1];

Then, enter the following in the Pattern Search Tool:

• Set Initial point to x0.

• Set the following Linear inequalities:

- Set A = to Aineq.

- Set b = to bineq.

- Set Aeq = to Aeq.

- Set beq = to beq.

The following figure shows these settings in the Pattern Search Tool.

Then click Start to run the pattern search. When the search is finished, the
results are displayed in Status and results pane, as shown in the following
figure.

5-7

5 Using Direct Search

Pausing and Stopping the Algorithm
While pattern search is running, you can

• Click Pause to temporarily suspend the algorithm. To resume the
algorithm from the point at which you paused, click Resume.

• Click Stop to stop the algorithm. The Status and results pane displays
the objective function value of the current point at the moment you clicked
Stop.

Displaying Plots
The Plots pane, shown in the following figure, enables you to display various
plots of the results of a pattern search.

5-8

Overview of the Pattern Search Tool (GUI)

Select the check boxes next to the plots you want to display. For example, if you
select Best function value and Mesh size, and run the example described
in “Example: Finding the Minimum of a Function Using the GPS Algorithm”
on page 2-6, the tool displays the plots shown in the following figure.

The upper plot displays the objective function value at each iteration. The
lower plot displays the mesh size at each iteration.

Note When you display more than one plot, clicking on any plot while the
pattern search is running or after the solver has completed opens a larger
version of the plot in a separate window.

5-9

5 Using Direct Search

“Plot Options” on page 8-24 describes the types of plots you can create.

Example — Working with a Custom Plot Function
To use a plot function other than those included with the toolbox, you can
write your own custom plot function that is called at each iteration of the
pattern search to create the plot. This example shows how to create a plot
function that displays the logarithmic change in the best objective function
value from the previous iteration to the current iteration.

This section covers the following topics:

• “Creating the Custom Plot Function” on page 5-10

• “Using the Custom Plot Function” on page 5-11

• “How the Plot Function Works” on page 5-12

Creating the Custom Plot Function
To create the plot function for this example, copy and paste the following code
into a new M-file in the MATLAB Editor.

function stop = psplotchange(optimvalues, flag)

% PSPLOTCHANGE Plots the change in the best objective function

% value from the previous iteration.

% Best objective function value in the previous iteration

persistent last_best

stop = false;

if(strcmp(flag,'init'))

set(gca,'Yscale','log'); %Set up the plot

hold on;

xlabel('Iteration');

ylabel('Log Change in Values');

title(['Change in Best Function Value']);

end

% Best objective function value in the current iteration

best = min(optimvalues.fval);

5-10

Overview of the Pattern Search Tool (GUI)

% Set last_best to best

if optimvalues.iteration == 0

last_best = best;

else

%Change in objective function value

change = last_best - best;

plot(optimvalues.iteration, change, '.r');

end

Then save the M-file as psplotchange.m in a directory on the MATLAB path.

Using the Custom Plot Function
To use the custom plot function, select Custom function in the Plots pane
and enter @psplotchange in the field to the right. To compare the custom plot
with the best function value plot, also select Best function value. Now,
when you run the example described in “Example — A Linearly Constrained
Problem” on page 5-5, the pattern search tool displays the plots shown in
the following figure.

5-11

5 Using Direct Search

Note that because the scale of the y-axis in the lower custom plot is
logarithmic, the plot will only show changes that are greater than 0. The
logarithmic scale shows small changes in the objective function that the upper
plot does not reveal.

How the Plot Function Works
The plot function uses information contained in the following structures,
which the Pattern Search Tool passes to the function as input arguments:

• optimvalues — Structure containing the current state of the solver

• flag — String indicating the current status of the algorithm

The most important statements of the custom plot function, psplotchange.m,
are summarized in the following table.

5-12

Overview of the Pattern Search Tool (GUI)

Custom Plot Function Statements

M-File Statement Description

persistent last_best Creates the persistent variable
last_best, the best objective
function value in the previous
generation. Persistent variables are
preserved over multiple calls to the
plot function.

set(gca,'Yscale','log') Sets up the plot before the algorithm
starts.

best = min(optimvalues.fval) Sets best equal to the minimum
objective function value. The field
optimvalues.fval contains the
objective function value in the
current iteration. The variable best
is the minimum objective function
value. For a complete description
of the fields of the structure
optimvalues, see “Structure of the
Plot Functions” on page 8-4.

change = last_best - best Sets the variable change to the
best objective function value at
the previous iteration minus the
best objective function value in the
current iteration.

plot(optimvalues.iteration,
change, '.r')

Plots the variable change at the
current objective function value, for
the current iteration contained in
optimvalues.iteration.

5-13

5 Using Direct Search

Setting Options in the Pattern Search Tool
You can set options for a pattern search in the Options pane, shown in the
figure below.

5-14

Overview of the Pattern Search Tool (GUI)

For a detailed description of the available options, see “Pattern Search
Options” on page 8-2.

Setting Options as Variables in the MATLAB Workspace
You can set numerical options either directly, by typing their values in the
corresponding edit box, or by entering the name of a variable in the MATLAB
workspace that contains the option values. For options whose values are
large matrices or vectors, it is often more convenient to define their values as
variables in the MATLAB workspace.

Importing and Exporting Options and Problems
You can export options and problem structures from the Pattern Search Tool
to the MATLAB workspace, and later import them in a subsequent session of
the tool. This provides an easy way to save your work for future sessions of
the Pattern Search Tool. The following sections describe how to import and
export options and problem structures.

Exporting Options, Problems, and Results
After working on a problem using the Pattern Search Tool, you can export the
following information to the MATLAB workspace:

• The problem definition, including

- The objective function

- The start point

- Constraints on the problem

• The current options

• The results of the algorithm

To do so, click the Export to Workspace button or select Export to
Workspace from the File menu. This opens the dialog box shown in the
following figure.

5-15

5 Using Direct Search

The dialog box provides the following options:

• To save the objective function and options in a MATLAB structure, select
Export problem and options to a MATLAB structure named and
enter a name for the structure.

If you have run a pattern search in the current session and you select
Include information needed to resume this run, the final point from
the last search is saved in place of Start point. Use this option if you
want to run the pattern search at a later time from the final point of the
last search.

See “Importing a Problem” on page 5-18.

• To save only the options, select Export options to a MATLAB structure
named and enter a name for the options structure.

• To save the results of the last run of the algorithm, select Export results to
a MATLAB structure named and enter a name for the results structure.

Example — Running patternsearch on an Exported Problem
To export the problem described in “Example — A Linearly Constrained
Problem” on page 5-5 and perform a pattern search on it using the function
patternsearch at the command line, do the following steps:

1 Click Export to Workspace.

2 In the Export to Workspace dialog box, enter a name for the problem
structure, such as my_psproblem, in the Export problems and options
to a MATLAB structure named field.

5-16

Overview of the Pattern Search Tool (GUI)

3 Call the function patternsearch with my_psproblem as the input
argument.

[x fval] = patternsearch(my_psproblem)

This returns

x =

1.0010 -2.3027 9.5131 -0.0474 -0.1977 1.3083

fval =

2.1890e+003

See “Performing a Pattern Search from the Command Line” on page 5-19
for more information.

Importing Options
To import an options structure for a pattern search from the MATLAB
workspace, select Import Options from the File menu. This opens a dialog
box that displays a list of the valid pattern search options structures in the
MATLAB workspace. When you select an options structure and click Import,
the Pattern Search Tool resets its options to the values in the imported
structure.

Note You cannot import options structures that contain any invalid option
fields. Structures with invalid fields are not displayed in the Import Pattern
Search Options dialog box.

You can create an options structure in either of the following ways:

• Calling psoptimset with options as the output

• By saving the current options from the Export to Workspace dialog box
in the Pattern Search Tool

5-17

5 Using Direct Search

Importing a Problem
To import a problem that you previously exported from the Pattern Search
Tool, select Import Problem from the File menu. This opens the dialog box
that displays a list of the pattern search problem structures in the MATLAB
workspace. When you select a problem structure and click OK, the Pattern
Search Tool resets the problem definition and the options to the values in
the imported structure. In addition, if you selected Include information
needed to resume this run when you created the problem structure, the
tool resets Start point to the final point of the last run prior to exporting
the structure.

See “Exporting Options, Problems, and Results” on page 5-15.

Generating an M-File
To create an M-file that runs a pattern search using the objective function
and options you specify in the Pattern Search Tool, select Generate M-File
from the File menu and save the M-file in a directory on the MATLAB path.
Calling this M-file at the command line returns the same results as the
Pattern Search Tool, using the objective function and options settings that
were in place when you generated the M-file.

5-18

Performing a Pattern Search from the Command Line

Performing a Pattern Search from the Command Line

In this section...

“Calling patternsearch with the Default Options” on page 5-19

“Setting Options for patternsearch at the Command Line” on page 5-21

“Using Options and Problems from the Pattern Search Tool” on page 5-23

Calling patternsearch with the Default Options
This section describes how to perform a pattern search with the default
options.

Pattern Search on Unconstrained Problems
For an unconstrained problem, call patternsearch with the syntax

[x fval] = patternsearch(@objectfun, x0)

The output arguments are

• x — The final point

• fval — The value of the objective function at x

The required input arguments are

• @objectfun — A function handle to the objective function objectfun,
which you can write as an M-file. See “Writing M-Files for Functions You
Want to Optimize” on page 1-3 to learn how to do this.

• x0 — The initial point for the pattern search algorithm.

As an example, you can run the example described in “Example: Finding
the Minimum of a Function Using the GPS Algorithm” on page 2-6 from the
command line by entering

[x fval] = patternsearch(@ps_example, [2.1 1.7])

This returns

5-19

5 Using Direct Search

Optimization terminated: mesh size less than options.TolMesh.

x =

-4.7124 -0.0000

fval =

-2.0000

Pattern Search on Constrained Problems
If your problem has constraints, use the syntax

[x fval] = patternsearch(@objfun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

where

• A is a matrix and b is vector that represent inequality constraints of the
form .

• Aeq is a matrix and beq is a vector that represent equality constraints of
the form .

• lb and ub are vectors representing bound constraints of the form and
, respectively.

• nonlcon is a function that returns the nonlinear equality and inequality
vectors, C and Ceq, respectively. The function is minimized such that

C x() ≤ 0 and Ceq(x)=0.

You only need to pass in the constraints that are part of the problem. For
example, if there are no bound constraints or a nonlinear constraint function,
use the syntax

[x fval] = patternsearch(@objfun, x0, A, b Aeq, beq)

Use empty brackets [] for constraint arguments that are not needed for the
problem. For example, if there are no inequality constraints or a nonlinear
constraint function, use the syntax

5-20

Performing a Pattern Search from the Command Line

[x fval] = patternsearch(@objfun, x0, [], [], Aeq, beq, lb, ub)

Additional Output Arguments
To get more information about the performance of the pattern search, you can
call patternsearch with the syntax

[x fval exitflag output] = patternsearch(@objfun, x0)

Besides x and fval, this returns the following additional output arguments:

• exitflag — Integer indicating whether the algorithm was successful

• output — Structure containing information about the performance of the
solver

See the reference page for patternsearch for more information about these
arguments.

Setting Options for patternsearch at the Command
Line
You can specify any of the options that are available in the Pattern Search
Tool by passing an options structure as an input argument to patternsearch
using the syntax

[x fval] = patternsearch(@fitnessfun, nvars, ...
A, b, Aeq, beq, lb, ub, nonlcon, options)

Pass in empty brackets [] for any constraints that do not appear in the
problem.

You create the options structure using the function psoptimset.

options = psoptimset

This returns the options structure with the default values for its fields.

options =

TolMesh: 1.0000e-006
TolCon: 1.0000e-006

5-21

5 Using Direct Search

TolX: 1.0000e-006
TolFun: 1.0000e-006

TolBind: 1.0000e-003
MaxIter: '100*numberofvariables'

MaxFunEvals: '2000*numberofvariables'
TimeLimit: Inf

MeshContraction: 0.5000
MeshExpansion: 2

MeshAccelerator: 'off'
MeshRotate: 'on'

InitialMeshSize: 1
ScaleMesh: 'on'

MaxMeshSize: Inf
InitialPenalty: 10
PenaltyFactor: 100

PollMethod: 'gpspositivebasis2n'
CompletePoll: 'off'
PollingOrder: 'consecutive'
SearchMethod: []

CompleteSearch: 'off'
Display: 'final'

OutputFcns: []
PlotFcns: []

PlotInterval: 1
Cache: 'off'

CacheSize: 10000
CacheTol: 2.2204e-016

Vectorized: 'off'

The function patternsearch uses these default values if you do not pass
in options as an input argument.

The value of each option is stored in a field of the options structure, such as
options.MeshExpansion. You can display any of these values by entering
options followed by the name of the field. For example, to display the mesh
expansion factor for the pattern search, enter

5-22

Performing a Pattern Search from the Command Line

options.MeshExpansion

ans =

2

To create an options structure with a field value that is different from the
default, use the function psoptimset. For example, to change the mesh
expansion factor to 3 instead of its default value 2, enter

options = psoptimset('MeshExpansion', 3)

This creates the options structure with all values set to their defaults except
for MeshExpansion, which is set to 3.

If you now call patternsearch with the argument options, the pattern
search uses a mesh expansion factor of 3.

If you subsequently decide to change another field in the options structure,
such as setting PlotFcns to @psplotmeshsize, which plots the mesh size at
each iteration, call psoptimset with the syntax

options = psoptimset(options, 'PlotFcns', @psplotmeshsize)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @plotmeshsize. Note that if you omit the options input
argument, psoptimset resets MeshExpansion to its default value, which is 2.

You can also set both MeshExpansion and PlotFcns with the single command

options = psoptimset('MeshExpansion',3,'PlotFcns',@plotmeshsize)

Using Options and Problems from the Pattern Search
Tool
As an alternative to creating the options structure using psoptimset, you
can set the values of options in the Pattern Search Tool and then export the
options to a structure in the MATLAB workspace, as described in “Exporting
Options, Problems, and Results” on page 5-15. If you export the default
options in the Pattern Search Tool, the resulting options structure has the
same settings as the default structure returned by the command

5-23

5 Using Direct Search

options = psoptimset

except for the default value of 'Display', which is 'final' when created by
psoptimset, but 'none' when created in the Pattern Search Tool.

You can also export an entire problem from the Pattern Search Tool and run
it from the command line. See “Example — Running patternsearch on an
Exported Problem” on page 5-16 for an example.

5-24

Pattern Search Examples: Setting Options

Pattern Search Examples: Setting Options

In this section...

“Poll Method” on page 5-25

“Complete Poll” on page 5-27

“Using a Search Method” on page 5-32

“Mesh Expansion and Contraction” on page 5-35

“Mesh Accelerator” on page 5-40

“Using Cache” on page 5-41

“Setting Tolerances for the Solver” on page 5-43

“Constrained Minimization Using patternsearch” on page 5-48

Note All examples use the generalized pattern search (GPS) algorithm, but
can be applied to the MADS algorithm as well.

Poll Method
At each iteration, the pattern search polls the points in the current
mesh—that is, it computes the objective function at the mesh points to see
if there is one whose function value is less than the function value at the
current point. “How Pattern Search Works” on page 2-13 provides an example
of polling. You can specify the pattern that defines the mesh by the Poll
method option. The default pattern, GPS Positive basis 2N, consists of the
following 2N directions, where N is the number of independent variables for
the objective function.

5-25

5 Using Direct Search

For example, if objective function has three independent variables, the GPS
Positive basis 2N, consists of the following six vectors.

Alternatively, you can set Poll method to GPS Positive basis NP1, the
pattern consisting of the following N + 1 directions.

For example, if objective function has three independent variables, the GPS
Positive basis Np1, consists of the following four vectors.

5-26

Pattern Search Examples: Setting Options

A pattern search will sometimes run faster using GPS Positive basis Np1
rather than the GPS Positive basis 2N as the Poll method, because
the algorithm searches fewer points at each iteration. Although not being
addressed in this example, the same is true when using the MADS Positive
basis Np1 over the MADS Positive basis 2N. For example, if you run
a pattern search on the example described in “Example — A Linearly
Constrained Problem” on page 5-5, the algorithm performs 2080 function
evaluations with GPS Positive basis 2N, the default Poll method, but only
1413 function evaluations using GPS Positive basis Np1.

However, if the objective function has many local minima, using GPS Positive
basis 2N as the Poll method might avoid finding a local minimum that is
not the global minimum, because the search explores more points around
the current point at each iteration.

Complete Poll
By default, if the pattern search finds a mesh point that improves the value
of the objective function, it stops the poll and sets that point as the current
point for the next iteration. When this occurs, some mesh points might not get
polled. Some of these unpolled points might have an objective function value
that is even lower than the first one the pattern search finds.

For problems in which there are several local minima, it is sometimes
preferable to make the pattern search poll all the mesh points at each
iteration and choose the one with the best objective function value. This
enables the pattern search to explore more points at each iteration and
thereby potentially avoid a local minimum that is not the global minimum.
You can make the pattern search poll the entire mesh setting Complete poll
to On in Poll options.

5-27

5 Using Direct Search

Example — Using a Complete Poll in a Generalized Pattern
Search
As an example, consider the following function.

The following figure shows a plot of the function.

−10

−5

0

5

10

−10
−5

0
5

10
15

−25

−20

−15

−10

−5

0

�	��
���������������
�
	��
���������������

The global minimum of the function occurs at (0, 0), where its value is -25.
However, the function also has a local minimum at (0, 9), where its value is
-16.

5-28

Pattern Search Examples: Setting Options

To create an M-file that computes the function, copy and paste the following
code into a new M-file in the MATLAB Editor.

function z = poll_example(x)
if x(1)^2 + x(2)^2 <= 25

z = x(1)^2 + x(2)^2 - 25;
elseif x(1)^2 + (x(2) - 9)^2 <= 16

z = x(1)^2 + (x(2) - 9)^2 - 16;
else z = 0;
end

Then save the file as poll_example.m in a directory on the MATLAB path.

To run a pattern search on the function, enter the following in the Pattern
Search Tool:

• Set Objective function to @poll_example.

• Set Start point to [0 5].

• Set Level of display to Iterative in the Display to command window
options.

Click Start to run the pattern search with Complete poll set to Off, its
default value. The Pattern Search Tool displays the results in the Status and
results pane, as shown in the following figure.

5-29

5 Using Direct Search

The pattern search returns the local minimum at (0, 9). At the initial point,
(0, 5), the objective function value is 0. At the first iteration, the search polls
the following mesh points.

f((0, 5) + (1, 0)) = f(1, 5) = 0

f((0, 5) + (0, 1)) = f(0, 6) = -7

As soon as the search polls the mesh point (0, 6), at which the objective
function value is less than at the initial point, it stops polling the current
mesh and sets the current point at the next iteration to (0, 6). Consequently,
the search moves toward the local minimum at (0, 9) at the first iteration. You
see this by looking at the first two lines of the command line display.

Iter f-count MeshSize f(x) Method
0 1 1 0 Start iterations
1 3 2 -7 Successful Poll

Note that the pattern search performs only two evaluations of the objective
function at the first iteration, increasing the total function count from 1 to 3.

Next, set Complete poll to On and click Start. The Status and results
pane displays the following results.

5-30

Pattern Search Examples: Setting Options

This time, the pattern search finds the global minimum at (0, 0). The
difference between this run and the previous one is that with Complete poll
set to On, at the first iteration the pattern search polls all four mesh points.

f((0, 5) + (1, 0)) = f(1, 5) = 0

f((0, 5) + (0, 1)) = f(0, 6) = -6

f((0, 5) + (-1, 0)) = f(-1, 5) = 0

f((0, 5) + (0, -1)) = f(0, 4) = -9

Because the last mesh point has the lowest objective function value, the
pattern search selects it as the current point at the next iteration. The first
two lines of the command-line display show this.

Iter f-count MeshSize f(x) Method
0 1 1 0 Start iterations
1 5 2 -9 Successful Poll

In this case, the objective function is evaluated four times at the first iteration.
As a result, the pattern search moves toward the global minimum at (0, 0).

The following figure compares the sequence of points returned when
Complete poll is set to Off with the sequence when Complete poll is On.

5-31

5 Using Direct Search

−6 −4 −2 0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

8

10

12

14
Initial point
Complete poll off
Complete poll on

�	��
�������

�
	��
�������

Using a Search Method
In addition to polling the mesh points, the pattern search algorithm can
perform an optional step at every iteration, called search. At each iteration,
the search step applies another optimization method to the current point. If
this search does not improve the current point, the poll step is performed.

The following example illustrates the use of a search method on the problem
described in “Example — A Linearly Constrained Problem” on page 5-5. To
set up the example, enter the following commands at the MATLAB prompt to
define the initial point and constraints.

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
beq = [84 62 65 1];

5-32

Pattern Search Examples: Setting Options

Then enter the settings shown in the following figure in the Pattern Search
Tool.

For comparison, click Start to run the example without a search method. This
displays the plots shown in the following figure.

5-33

5 Using Direct Search

To see the effect of using a search method, select GPS Positive Basis Np1 in
the Search method field in Search options. This sets the search method to
be a pattern search using the pattern for GPS Positive basis Np1. Then
click Start to run the genetic algorithm. This displays the following plots.

5-34

Pattern Search Examples: Setting Options

Note that using the search method reduces the total function evaluations by
almost 50 percent—from 1889 to 981—and reduces the number of iterations
from 250 to 78.

Mesh Expansion and Contraction
The Expansion factor and Contraction factor options, in Mesh options,
control how much the mesh size is expanded or contracted at each iteration.
With the default Expansion factor value of 2, the pattern search multiplies
the mesh size by 2 after each successful poll. With the default Contraction
factor value of 0.5, the pattern search multiplies the mesh size by 0.5 after
each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the
pattern search by selecting Mesh size in the Plots pane.

5-35

5 Using Direct Search

To also display the values of the mesh size and objective function at the
command line, set Level of display to Iterative in the Display to
command window options.

When you run the example described in “Example — A Linearly Constrained
Problem” on page 5-5, the Pattern Search Tool displays the following plot.

5-36

Pattern Search Examples: Setting Options

To see the changes in mesh size more clearly, change the y-axis to logarithmic
scaling as follows:

1 Select Axes Properties from the Edit menu in the plot window.

2 In the Properties Editor, select the Y tab.

3 Set Scale to Log.

Updating these settings in the MATLAB Property Editor will show the plot in
the following figure.

5-37

5 Using Direct Search

The first 37 iterations result in successful polls, so the mesh sizes increase
steadily during this time. You can see that the first unsuccessful poll occurs at
iteration 38 by looking at the command-line display for that iteration.

36 39 6.872e+010 3486 Successful Poll
37 40 1.374e+011 3486 Successful Poll
38 43 6.872e+010 3486 Refine Mesh

Note that at iteration 37, which is successful, the mesh size doubles for the
next iteration. But at iteration 38, which is unsuccessful, the mesh size
is multiplied 0.5.

To see how Expansion factor and Contraction factor affect the pattern
search, make the following changes:

• Set Expansion factor to 3.0.

• Set Contraction factor to 0.75.

5-38

Pattern Search Examples: Setting Options

Then click Start. The Status and results pane shows that the final point is
approximately the same as with the default settings of Expansion factor
and Contraction factor, but that the pattern search takes longer to reach
that point.

The algorithm halts because it exceeds the maximum number of iterations,
whose value you can set in the Max iteration field in the Stopping criteria
options. The default value is 100 times the number of variables for the
objective function, which is 6 in this example.

When you change the scaling of the y-axis to logarithmic, the mesh size plot
appears as shown in the following figure.

5-39

5 Using Direct Search

Note that the mesh size increases faster with Expansion factor set to 3.0,
as compared with the default value of 2.0, and decreases more slowly with
Contraction factor set to 0.75, as compared with the default value of 0.5.

Mesh Accelerator
The mesh accelerator can make a pattern search converge faster to an
optimal point by reducing the number of iterations required to reach the
mesh tolerance. When the mesh size is below a certain value, the pattern
search contracts the mesh size by a factor smaller than the Contraction
factor factor.

Note It is recommended to only use the mesh accelerator for problems in
which the objective function is not too steep near the optimal point, or you
might lose some accuracy. For differentiable problems, this means that the
absolute value of the derivative is not too large near the solution.

To use the mesh accelerator, set Accelerator to On in the Mesh options.
When you run the example described in “Example — A Linearly Constrained

5-40

Pattern Search Examples: Setting Options

Problem” on page 5-5, the number of iterations required to reach the mesh
tolerance is 246, as compared with 270 when Accelerator is set to Off.

You can see the effect of the mesh accelerator by setting Level of display
to Iterative in Display to command window. Run the example with
Accelerator set to On, and then run it again with Accelerator set to Off.
The mesh sizes are the same until iteration 226, but differ at iteration 227.
The MATLAB Command Window displays the following lines for iterations
226 and 227 with Accelerator set to Off.

Iter f-count MeshSize f(x) Method
226 1501 6.104e-005 2189 Refine Mesh
227 1516 3.052e-005 2189 Refine Mesh

Note that the mesh size is multiplied by 0.5, the default value of Contraction
factor.

For comparison, the Command Window displays the following lines for the
same iteration numbers with Accelerator set to On.

Iter f-count MeshSize f(x) Method
226 1501 6.104e-005 2189 Refine Mesh
227 1516 1.526e-005 2189 Refine Mesh

In this case the mesh size is multiplied by 0.25.

Using Cache
Typically, at any given iteration of a pattern search, some of the mesh points
might coincide with mesh points at previous iterations. By default, the
pattern search recomputes the objective function at these mesh points even
though it has already computed their values and found that they are not
optimal. If computing the objective function takes a long time—say, several
minutes—this can make the pattern search run significantly longer.

You can eliminate these redundant computations by using a cache, that is,
by storing a history of the points that the pattern search has already visited.
To do so, set Cache to On in Cache options. At each poll, the pattern search
checks to see whether the current mesh point is within a specified tolerance,
Tolerance, of a point in the cache. If so, the search does not compute the

5-41

5 Using Direct Search

objective function for that point, but uses the cached function value and
moves on to the next point.

Note When Cache is set to On, the pattern search might fail to identify a
point in the current mesh that improves the objective function because it is
within the specified tolerance of a point in the cache. As a result, the pattern
search might run for more iterations with Cache set to On than with Cache
set to Off. It is generally a good idea to keep the value of Tolerance very
small, especially for highly nonlinear objective functions.

To illustrate this, select Best function value and Function count in
the Plots pane and run the example described in “Example — A Linearly
Constrained Problem” on page 5-5 with Cache set to Off. After the pattern
search finishes, the plots appear as shown in the following figure.

0 50 100 150 200 250 300
2000

2500

3000

3500

4000

Iteration

F
un

ct
io

n
va

lu
e

Best Function Value: 2189.0301

0 50 100 150 200 250 300
0

5

10

15

20

Iteration

F
un

ct
io

n
co

un
t p

er
 in

te
rv

al

Total Function Count: 2080

5-42

Pattern Search Examples: Setting Options

Note that the total function count is 2080.

Now, set Cache to On and run the example again. This time, the plots appear
as shown in the following figure.

0 50 100 150 200 250 300
2000

2500

3000

3500

4000

Iteration

F
un

ct
io

n
va

lu
e

Best Function Value: 2189.0301

0 50 100 150 200 250 300
0

5

10

15

Iteration

F
un

ct
io

n
co

un
t p

er
 in

te
rv

al

Total Function Count: 1973

This time, the total function count is reduced to 1973.

Setting Tolerances for the Solver
Tolerance refers to how small a parameter, such a mesh size, can become
before the search is halted or changed in some way. You can specify the value
of the following tolerances:

• Mesh tolerance — When the current mesh size is less than the value of
Mesh tolerance, the algorithm halts.

5-43

5 Using Direct Search

• X tolerance — After a successful poll, if the distance from the previous
best point to the current best point is less than the value of X tolerance,
the algorithm halts.

• Function tolerance — After a successful poll, if the difference between
the function value at the previous best point and function value at the
current best point is less than the value of Function tolerance, the
algorithm halts.

• Nonlinear constraint tolerance — The algorithm treats a point to be
feasible if constraint violation is less than TolCon.

• Bind tolerance — Bind tolerance applies to constrained problems and
specifies how close a point must get to the boundary of the feasible region
before a linear constraint is considered to be active. When a linear
constraint is active, the pattern search polls points in directions parallel to
the linear constraint boundary as well as the mesh points.

Usually, you should set Bind tolerance to be at least as large as the
maximum of Mesh tolerance, X tolerance, and Function tolerance.

Example — Setting Bind Tolerance
The following example illustrates of how Bind tolerance affects a pattern
search. The example finds the minimum of

subject to the constraints

Note that you can compute the objective function using the function norm.
The feasible region for the problem lies between the two lines in the following
figure.

5-44

Pattern Search Examples: Setting Options

−2 −1.5 −1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

������
����!�	

Running a Pattern Search with the Default Bind Tolerance
To run the example, enter psearchtool to open the Pattern Search Tool and
enter the following information:

• Set Objective function to @(x) norm(x).

• Set Start point to [-1.001 -1.1].

• Select Mesh size in the Plots pane.

• Set Level of display to Iterative in the Display to command window
options.

Then click Start to run the pattern search.

The display in the MATLAB Command Window shows that the first four polls
are unsuccessful, because the mesh points do not lie in the feasible region.

Iter f-count MeshSize f(x) Method
0 1 1 1.487 Start iterations
1 1 0.5 1.487 Refine Mesh

5-45

5 Using Direct Search

2 1 0.25 1.487 Refine Mesh
3 1 0.125 1.487 Refine Mesh
4 1 0.0625 1.487 Refine Mesh

The pattern search contracts the mesh at each iteration until one of the mesh
points lies in the feasible region. The following figure shows a close-up of the
initial point and mesh points at iteration 5.

−1.1 −1.05 −1 −0.95 −0.9

−1.15

−1.1

−1.05

−1

−0.95

−0.9
Initial Point and Mesh Points at Iteration 5

Initial point
Mesh points

The top mesh point, which is (-1.001, -1.0375), has a smaller objective function
value than the initial point, so the poll is successful.

Because the distance from the initial point to lower boundary line is less than
the default value of Bind tolerance, which is 0.0001, the pattern search
does not consider the linear constraint to be active, so it does
not search points in a direction parallel to the boundary line.

5-46

Pattern Search Examples: Setting Options

Increasing the Value of Bind Tolerance
To see the effect of bind tolerance, change Bind tolerance to 0.01 and run
the pattern search again.

This time, the display in the MATLAB Command Window shows that the first
two iterations are successful.

Iter f-count MeshSize f(x) Method
0 1 1 1.487 Start iterations
1 2 2 0.7817 Successful Poll
2 3 4 0.6395 Successful Poll

Because the distance from the initial point to the boundary is less than Bind
tolerance, the second linear constraint is active. In this case, the pattern
search polls points in directions parallel to the boundary line ,
resulting in successful poll. The following figure shows the initial point with
two addition search points in directions parallel to the boundary.

−1.6 −1.4 −1.2 −1 −0.8 −0.6

−1.6

−1.4

−1.2

−1

−0.8

−0.6
Initial point
Search points in directions parallel to boundary

5-47

5 Using Direct Search

The following figure compares the sequences of points during the first 20
iterations of the pattern search for both settings of Bind tolerance.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

First 20 Iterations for Two Settings of Bind Tolerance

Bind tolerance = .0001
Bind tolerance = .01

Note that when Bind tolerance is set to .01, the points move toward the
optimal point more quickly. The pattern search requires only 90 iterations.
When Bind tolerance is set to .0001, the search requires 124 iterations.
However, when the feasible region does not contain very acute angles, as it
does in this example, increasing Bind tolerance can increase the number of
iterations required, because the pattern search tends to poll more points.

Constrained Minimization Using patternsearch
Suppose you want to minimize the simple objective function of two variables
x1 and x2,

min

x
 f(x) = (4-2.1*x - x)*x + x *x + (-4+4*x)*x1

2
1

4
3

1
2

1 2 2
2

2
22

5-48

Pattern Search Examples: Setting Options

subject to the following nonlinear inequality constraints and bounds

x x + x - x + 1.5 0, (nonlinear constraint)
10 - x x

1 2 1 2

1 2

⋅ ≤
⋅ 0, (nonlinear constraint)

0 x 1, 1

≤
≤ ≤ (bound)

0 x 13. 2≤ ≤ (bound)

Begin by creating the objective and constraint functions. First, create an
M-file named simple_objective.m as follows:

function y = simple_objective(x)

y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;

The pattern search solver assumes the objective function will take one input x
where x has as many elements as number of variables in the problem. The
objective function computes the value of the function and returns that scalar
value in its one return argument y.

Then create an M-file named simple_constraint.m containing the
constraints:

function [c, ceq] = simple_constraint(x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);
-x(1)*x(2) + 10];
ceq = [];

The pattern search solver assumes the constraint function will take one input
x, where x has as many elements as the number of variables in the problem.
The constraint function computes the values of all the inequality and equality
constraints and returns two vectors, c and ceq, respectively.

Next, to minimize the objective function using the patternsearch function,
you need to pass in a function handle to the objective function as well as
specifying a start point as the second argument. Lower and upper bounds
are provided as LB and UB respectively. In addition, you also need to pass a
function handle to the nonlinear constraint function.

ObjectiveFunction = @simple_objective;

X0 = [0 0]; % Starting point

LB = [0 0]; % Lower bound

5-49

5 Using Direct Search

UB = [1 13]; % Upper bound

ConstraintFunction = @simple_constraint;

[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],...

LB,UB,ConstraintFunction)

Optimization terminated: mesh size less than options.TolMesh

and constraint violation is less than options.TolCon.

x =

0.8122 12.3122

fval =

9.1324e+004

Next, plot the results. Create an options structure using psoptimset that
selects two plot functions. The first plot function psplotbestf plots the
best objective function value at every iteration. The second plot function
psplotmaxconstr plots the maximum constraint violation at every iteration.

Note You can also visualize the progress of the algorithm by displaying
information to the Command Window using the 'Display' option.

options = psoptimset('PlotFcns',{@psplotbestf,@psplotmaxconstr},'Display','iter');

[x,fval] = patternsearch(ObjectiveFunction,X0,[],[],[],[],LB,UB,ConstraintFunction,options)

max

Iter f-count f(x) constraint MeshSize Method

0 1 0 10 0.8919

1 5 113580 0 0.001 Increase penalty

2 24 91324.4 0 1e-005 Increase penalty

3 48 91324 0 1e-007 Increase penalty

Optimization terminated: mesh size less than options.TolMesh

and constraint violation is less than options.TolCon.

5-50

Pattern Search Examples: Setting Options

x =

0.8122 12.3122

fval =

9.1324e+004

Best Objective Function Value and Maximum Constraint Violation at Each
Iteration

5-51

5 Using Direct Search

Parameterizing Functions Called by patternsearch

In this section...

“Using Additional Parameters” on page 5-52

“Parameterizing Functions Using Anonymous Functions with
patternsearch” on page 5-52

“Parameterizing a Function Using a Nested Function with patternsearch”
on page 5-54

Using Additional Parameters
Sometimes you might want to write functions that are called by
patternsearch that have additional parameters to the independent variable.
For example, suppose you want to minimize the following function:

for different values of a, b, and c. Because patternsearch accepts objective
functions that depend only on x, you must provide the additional parameters
a, b, and c to the function before calling patternsearch.

The following examples show how to parameterize the objective function, but
you can use the same methods to parameterize any user-defined functions
called by patternsearch, for example using a custom search method.

Parameterizing Functions Using Anonymous
Functions with patternsearch
To parameterize your function, first write an M-file containing the following
code:

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

(-c + c*x(2)^2)*x(2)^2;

Save the M- file as parameterfun.m in a directory on the MATLAB path.

5-52

Parameterizing Functions Called by patternsearch

Now, suppose you want to minimize the function for the parameter values
a = 4, b =2.1, and c = 4. To do so, define a function handle to an anonymous
function by entering the following commands at the MATLAB prompt:

a = 4; b = 2.1; c = 4; % Define parameter values
objfun = @(x) parameterfun(x,a,b,c);
x0 = [0.5 0.5];

If you are using the Pattern Search Tool,

• Set Objective function to objfun.

• Set Start point to x0.

The following figure shows these settings in the Pattern Search Tool.

Next, click Start to run the optimization. The Status and results pane
displays the final answer.

If you subsequently decide to change the values of a, b, and c, you must
recreate the anonymous function. For example,

5-53

5 Using Direct Search

a = 3.6; b = 2.4; c = 5; % Define parameter values
objfun = @(x) parameterfun(x,a,b,c);

Parameterizing a Function Using a Nested Function
with patternsearch
As an alternative to parameterizing the objective function as an anonymous
function, you can write a single M-file that

• Accepts a, b, c, and x0 as inputs.

• Contains the objective function as a nested function.

• Calls patternsearch.

The following shows the code for the M-file.

function [x fval] = runps(a,b,c,x0)
[x, fval] = patternsearch(@nestedfun,x0);
% Nested function that computes the objective function

function y = nestedfun(x)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...
(-c + c*x(2)^2)*x(2)^2;

end
end

Note that the objective function is computed in the nested function nestedfun,
which has access to the variables a, b, and c. To run the optimization, enter

[x fval] = runps(a,b,c,x0)

This returns

Optimization terminated: mesh size less than options.TolMesh.

x =

-0.0898 0.7127

fval =

-1.0316

5-54

6

Using the Genetic
Algorithm

Overview of the Genetic Algorithm
Tool (p. 6-2)

Provides an overview of the Genetic
Algorithm Tool.

Using the Genetic Algorithm from
the Command Line (p. 6-23)

Describes how to use the genetic
algorithm at the command line.

Genetic Algorithm Examples
(p. 6-32)

Explains how to set options for the
genetic algorithm.

Parameterizing Functions Called by
ga (p. 6-65)

Explains how to write functions with
additional parameters.

6 Using the Genetic Algorithm

Overview of the Genetic Algorithm Tool

In this section...

“Opening the Genetic Algorithm Tool” on page 6-2

“Defining an Unconstrained Problem in the Genetic Algorithm Tool” on
page 6-3

“Running the Genetic Algorithm” on page 6-4

“Pausing and Stopping the Algorithm” on page 6-5

“Displaying Plots” on page 6-7

“Example — Creating a Custom Plot Function” on page 6-9

“Reproducing Your Results” on page 6-12

“Setting Options in the Genetic Algorithm Tool” on page 6-13

“Importing and Exporting Options and Problems” on page 6-14

“Example — Resuming the Genetic Algorithm from the Final Population”
on page 6-18

“Generating an M-File” on page 6-22

Opening the Genetic Algorithm Tool
To open the tool, enter

gatool

at the MATLAB prompt.

This opens the Genetic Algorithm Tool, as shown in the following figure.

6-2

Overview of the Genetic Algorithm Tool

Defining an Unconstrained Problem in the Genetic
Algorithm Tool
You can define the problem you want to solve in the following two fields:

6-3

6 Using the Genetic Algorithm

• Fitness function — The function you want to minimize. Enter a handle
to an M-file function that computes the fitness function. “Writing M-Files
for Functions You Want to Optimize” on page 1-3 describes how to write
the M-file.

• Number of variables — The number of independent variables for the
fitness function.

The following figure shows these fields for the example described in “Example:
Rastrigin’s Function” on page 3-7.

Running the Genetic Algorithm
To run the genetic algorithm, click Start in the Run solver pane. When
you do so,

• The Current generation field displays the number of the current
generation.

• The Status and results pane displays the message GA running.

The following figure shows the Current generation field and Status and
results pane.

6-4

Overview of the Genetic Algorithm Tool

When the algorithm terminates, the Status and results pane displays

• The message GA terminated.

• The fitness function value of the best individual in the final generation

• The reason the algorithm terminated

• The coordinates of the final point

You can change many of the settings in the Genetic Algorithm Tool while the
algorithm is running. Your changes are applied at the next generation. Until
your changes are applied, which occurs at the start of the next generation,
the Status and results pane displays the message Changes pending. At the
start of the next generation, the pane displays the message Changes applied.

Pausing and Stopping the Algorithm
While the genetic algorithm is running, you can

• Click Pause to temporarily suspend the algorithm. To resume the
algorithm using the current population at the time you paused, click
Resume.

6-5

6 Using the Genetic Algorithm

• Click Stop to stop the algorithm. The Status and results pane displays
the fitness function value of the best point in the current generation at the
moment you clicked Stop.

Note If you click Stop and then run the genetic algorithm again by clicking
Start, the algorithm begins with a new random initial population or with the
population you specify in the Initial population field. If you want to restart
the algorithm where it left off, use the Pause and Resume buttons.

“Example — Resuming the Genetic Algorithm from the Final Population” on
page 6-18 explains what to do if you click Stop and later decide to resume the
genetic algorithm from the final population of the last run.

Setting Stopping Criteria
The genetic algorithm uses several criteria, listed in the Stopping criteria
options, to decide when to stop, in case you do not stop it manually by clicking
Stop. The algorithm stops if any one of the following conditions occur:

• Generations — The algorithm reaches the specified number of
generations.

• Time limit — The algorithm runs for the specified amount of time in
seconds.

• Fitness limit — The best fitness value in the current generation is less
than or equal to the specified value.

• Stall generations — The algorithm computes the specified number of
generations with no improvement in the fitness function.

• Stall time limit — The algorithm runs for the specified amount of time in
seconds with no improvement in the fitness function.

• Function tolerance — The algorithm runs until the cumulative change
in the fitness function value over Stall generations is less than Function
Tolerance.

The Nonlinear constraint tolerance is not used as stopping criterion. It is
used to determine the feasibility with respect to nonlinear constraints.

6-6

Overview of the Genetic Algorithm Tool

If you want the genetic algorithm to continue running until you click Pause
or Stop, you should change the default values of the following five options as
follows:

• Set Generations to Inf.

• Set Time limit to Inf.

• Set Fitness limit to -Inf.

• Set Stall generations to Inf.

• Set Stall time limit to Inf.

The following figure shows these settings.

Note Do not use these settings when calling the genetic algorithm function
ga at the command line. The function will not terminate until you press Ctrl
+ C. Instead, set Generations or Time limit to a finite number.

Displaying Plots
The Plots pane, shown in the following figure, enables you to display various
plots of the results of the genetic algorithm.

6-7

6 Using the Genetic Algorithm

Select the check boxes next to the plots you want to display. For example, if
you select Best fitness and Best individual, and run the example described
in “Example: Rastrigin’s Function” on page 3-7, the tool displays plots similar
to those shown in the following figure.

The upper plot displays the best and mean fitness values in each generation.
The lower plot displays the coordinates of the point with the best fitness value
in the current generation.

6-8

Overview of the Genetic Algorithm Tool

Note When you display more than one plot, clicking on any plot while the
genetic algorithm is running or after the solver has completed opens a larger
version of the plot in a separate window.

“Plot Options” on page 8-24 describes the types of plots you can create.

Example — Creating a Custom Plot Function
If none of the plot functions that come with the toolbox is suitable for the
output you want to plot, you can write your own custom plot function, which
the genetic algorithm calls at each generation to create the plot. This example
shows how to create a plot function that displays the change in the best fitness
value from the previous generation to the current generation.

This section covers the following topics:

• “Creating the Custom Plot Function” on page 6-9

• “Using the Plot Function” on page 6-10

• “How the Plot Function Works” on page 6-11

Creating the Custom Plot Function
To create the plot function for this example, copy and paste the following code
into a new M-file in the MATLAB Editor.

function state = gaplotchange(options, state, flag)

% GAPLOTCHANGE Plots the logarithmic change in the best score from the

% previous generation.

%

persistent last_best % Best score in the previous generation

if(strcmp(flag,'init')) % Set up the plot

set(gca,'xlim',[1,options.Generations],'Yscale','log');

hold on;

xlabel Generation

title('Change in Best Fitness Value')

end

6-9

6 Using the Genetic Algorithm

best = min(state.Score); % Best score in the current generation

if state.Generation == 0 % Set last_best to best.

last_best = best;

else

change = last_best - best; % Change in best score

last_best=best;

plot(state.Generation, change, '.r');

title(['Change in Best Fitness Value'])

end

Then save the M-file as gaplotchange.m in a directory on the MATLAB path.

Using the Plot Function
To use the custom plot function, select Custom in the Plots pane and enter
@gaplotchange in the field to the right. To compare the custom plot with the
best fitness value plot, also select Best fitness. Now, if you run the example
described in “Example: Rastrigin’s Function” on page 3-7, the tool displays
plots similar to those shown in the following figure.

6-10

Overview of the Genetic Algorithm Tool

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

Generation

F
itn

es
s

va
lu

e

Best: 0.0020445 Mean: 0.033263

10 20 30 40 50 60 70 80 90 100
10

−4

10
−2

10
0

10
2

Generation

Change in Best Fitness Value

Best fitness
Mean fitness

Note that because the scale of the y-axis in the lower custom plot is
logarithmic, the plot only shows changes that are greater then 0. The
logarithmic scale enables you to see small changes in the fitness function
that the upper plot does not reveal.

How the Plot Function Works
The plot function uses information contained in the following structures,
which the genetic algorithm passes to the function as input arguments:

• options — The current options settings

• state — Information about the current generation

• flag — String indicating the current status of the algorithm

The most important lines of the plot function are the following:

• persistent last_best

6-11

6 Using the Genetic Algorithm

Creates the persistent variable last_best—the best score in the previous
generation. Persistent variables are preserved over multiple calls to the
plot function.

• set(gca,'xlim',[1,options.Generations],'Yscale','log');

Sets up the plot before the algorithm starts. options.Generations is the
maximum number of generations.

• best = min(state.Score)

The field state.Score contains the scores of all individuals in the current
population. The variable best is the minimum score. For a complete
description of the fields of the structure state, see “Structure of the Plot
Functions” on page 8-26.

• change = last_best - best

The variable change is the best score at the previous generation minus the
best score in the current generation.

• plot(state.Generation, change, '.r')

Plots the change at the current generation, whose number is contained in
state.Generation.

The code for gaplotchange contains many of the same elements as the code
for gaplotbestf, the function that creates the best fitness plot.

Reproducing Your Results
To reproduce the results of the last run of the genetic algorithm, select the
Use random states from previous run check box. This resets the states
of the random number generators used by the algorithm to their previous
values. If you do not change any other settings in the Genetic Algorithm
Tool, the next time you run the genetic algorithm, it returns the same results
as the previous run.

Normally, you should leave Use random states from previous run
unselected to get the benefit of randomness in the genetic algorithm. Select
the Use random states from previous run check box if you want to analyze
the results of that particular run or show the exact results to others. After
the algorithm has run, you can clear your results using the Clear Status
button in the Run solver settings.

6-12

Overview of the Genetic Algorithm Tool

Setting Options in the Genetic Algorithm Tool
You can set options for the genetic algorithm in the Options pane, shown in
the figure below.

6-13

6 Using the Genetic Algorithm

“Genetic Algorithm Examples” on page 6-32 describes how options settings
affect the performance of the genetic algorithm. For a detailed description of
all the available options, see “Genetic Algorithm Options” on page 8-23.

Setting Options as Variables in the MATLAB Workspace
You can set numerical options either directly, by typing their values in the
corresponding edit box, or by entering the name of a variable in the MATLAB
workspace that contains the option values. For example, you can set the
Population size to 50 in either of the following ways:

• Enter 50 in the Population size field.

• Enter

popsize = 50

at the MATLAB prompt and then enter popsize in the Population size
field.

For options whose values are large matrices or vectors, it is often more
convenient to define their values as variables in the MATLAB workspace.
This way, it is easy to change the entries of the matrix or vector if necessary.

Importing and Exporting Options and Problems
You can export options and problem structures from the Genetic Algorithm
Tool to the MATLAB workspace, and then import them back into the tool at a
later time. This enables you to save the current settings for a problem and
restore them later. You can also export the options structure and use it with
the genetic algorithm function ga at the command line.

You can import and export the following information:

• The problem definition, including Fitness function, Number of
variables, Linear inequalities, Linear equalities, Bounds, and a
Nonlinear constraint function

• The currently specified options

• The results of the algorithm

6-14

Overview of the Genetic Algorithm Tool

The following sections explain how to import and export this information:

• “Exporting Options and Problems” on page 6-15

• “Example — Running ga on an Exported Problem” on page 6-16

• “Importing Options” on page 6-17

• “Importing Problems” on page 6-18

• “Resetting the Problem Fields” on page 6-18

Exporting Options and Problems
You can export options and problems to the MATLAB workspace so that
you can use them at a future time in the Genetic Algorithm Tool. You can
also apply the function ga using these options or problems at the command
line—see “Using Options and Problems from the Genetic Algorithm Tool”
on page 6-27.

To export options or problems, click the Export to Workspace button or
select Export to Workspace from the File menu. This opens the dialog box
shown in the following figure.

The dialog box provides the following options:

• To save both the problem definition and the current options settings, select
Export problem and options to a MATLAB structure named and
enter a name for the structure. Clicking OK saves this information to a
structure in the MATLAB workspace. If you later import this structure into
the Genetic Algorithm Tool, the settings for Fitness function, Number
of variables, and all options settings are restored to the values they had
when you exported the structure.

6-15

6 Using the Genetic Algorithm

Note If you select Use random states from previous run in the Run
solver pane before exporting a problem, the Genetic Algorithm Tool also
saves the states of rand and randn at the beginning of the last run when you
export. Then, when you import the problem and run the genetic algorithm
with Use random states from previous run selected, the results of the
run just before you exported the problem are reproduced exactly.

• If you want the genetic algorithm to resume from the final population of
the last run before you exported the problem, select Include information
needed to resume this run. Then, when you import the problem
structure and click Start, the algorithm resumes from the final population
of the previous run.

To restore the genetic algorithm’s default behavior of generating a random
initial population, delete the population in the Initial population field
and replace it with empty brackets, [].

Note If you select Include information needed to resume this run,
then selecting Use random states from previous run has no effect on
the initial population created when you import the problem and run the
genetic algorithm on it. The latter option is only intended to reproduce
results from the beginning of a new run, not from a resumed run.

• To save only the options, select Export options to a MATLAB structure
named and enter a name for the options structure.

• To save the results of the last run of the algorithm, select Export results to
a MATLAB structure named and enter a name for the results structure.

Example — Running ga on an Exported Problem
To export the problem described in “Example: Rastrigin’s Function” on page
3-7 and run the genetic algorithm function ga on it at the command line,
do the following steps:

1 Click Export to Workspace.

6-16

Overview of the Genetic Algorithm Tool

2 In the Export to Workspace dialog box, enter a name for the problem
structure, such as my_problem, in the Export problems and options to a
MATLAB structure named field.

3 At the MATLAB prompt, call the function ga with my_problem as the
input argument:

[x fval] = ga(my_problem)

This returns

x =

0.0027 -0.0052

fval =

0.0068

See “Using the Genetic Algorithm from the Command Line” on page 6-23
for more information.

Importing Options
To import an options structure from the MATLAB workspace, select Import
Options from the File menu. This opens a dialog box that displays a list of the
genetic algorithm options structures in the MATLAB workspace. When you
select an options structure and click Import, the options fields in the Genetic
Algorithm Tool are updated to display the values of the imported options.

You can create an options structure in either of the following ways:

• Calling gaoptimset with options as an output argument

• By exporting the current options from the Export to Workspace dialog box
in the Genetic Algorithm Tool

6-17

6 Using the Genetic Algorithm

Importing Problems
To import a problem that you previously exported from the Genetic Algorithm
Tool, select Import Problem from the File menu. This opens the dialog
box that displays a list of the genetic algorithm problem structures in the
MATLAB workspace. When you select a problem structure and click OK, the
following fields are updated in the Genetic Algorithm Tool:

• Fitness function

• Number of variables

• Linear inequalities

• Linear equalities

• Bounds

• Nonlinear constraint function

• The fields specified in the Options panel

Resetting the Problem Fields
To reset or clear a problem you previously ran in the Genetic Algorithm Tool,
select New Problem from the File menu. This sets all the fields in the
Genetic Algorithm Tool to the default options.

Example — Resuming the Genetic Algorithm from
the Final Population
The following example shows how export a problem so that when you import
it and click Start, the genetic algorithm resumes from the final population
saved with the exported problem. To run the example, enter the following
information in the Genetic Algorithm Tool:

• Set Fitness function to @ackleyfcn, which computes Ackley’s function, a
test function provided with the toolbox.

• Set Number of variables to 10.

• Select Best fitness in the Plots pane.

• Click Start.

6-18

Overview of the Genetic Algorithm Tool

This displays the following plot.

Suppose you want to experiment by running the genetic algorithm with other
options settings, and then later restart this run from its final population with
its current options settings. You can do this using the following steps:

1 Click Export to Workspace.

2 In the dialog box that appears,

• Select Export problem and options to a MATLAB structure
named.

• Enter a name for the problem and options, such as ackley_uniform,
in the text field.

• Select Include information needed to resume this run.

The dialog box should now appear as in the following figure.

6-19

6 Using the Genetic Algorithm

3 Click OK.

This exports the problem and options to a structure in the MATLAB
workspace. You can view the structure in the MATLAB Command Window
by entering

ackley_uniform

ackley_uniform =

fitnessfcn: @ackleyfcn
nvars: 10

LB: []
UB: []

Aineq: []
bineq: []

Aeq: []
beq: []

nonlcon: []
options: [1x1 struct]

After running the genetic algorithm with different options settings or even a
different fitness function, you can restore the problem as follows:

1 Select Import Problem from the File menu. This opens the dialog box
shown in the following figure.

6-20

Overview of the Genetic Algorithm Tool

2 Select ackley_uniform.

3 Click Import.

This sets the Initial population and Initial scores fields in the Population
panel to the final population of the run before you exported the problem.
All other options are restored to their setting during that run. When you
click Start, the genetic algorithm resumes from the saved final population.
The following figure shows the best fitness plots from the original run and
the restarted run.

6-21

6 Using the Genetic Algorithm

10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4

4.5

5

5.5

Generation

F
itn

es
s

va
lu

e

Best: 2.9861 Mean: 3.6454

Best fitness
Mean fitness

"����������������������

10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4

4.5

5

5.5

Generation

F
itn

es
s

va
lu

e

Best: 2.9882 Mean: 3.0033

Best fitness
Mean fitness

Note If, after running the genetic algorithm with the imported problem,
you want to restore the genetic algorithm’s default behavior of generating a
random initial population, delete the population in the Initial population
field.

Generating an M-File
To create an M-file that runs the genetic algorithm, using the fitness function
and options you specify in the Genetic Algorithm Tool, select Generate
M-File from the File menu and save the M-file in a directory on the MATLAB
path. Calling this M-file at the command line returns the same results as the
Genetic Algorithm Tool, using the fitness function and options settings that
were in place when you generated the M-file.

6-22

Using the Genetic Algorithm from the Command Line

Using the Genetic Algorithm from the Command Line

In this section...

“Running ga with the Default Options” on page 6-23

“Setting Options for ga at the Command Line” on page 6-24

“Using Options and Problems from the Genetic Algorithm Tool” on page 6-27

“Reproducing Your Results” on page 6-27

“Resuming ga from the Final Population of a Previous Run” on page 6-29

“Running ga from an M-File” on page 6-29

Running ga with the Default Options
To run the genetic algorithm with the default options, call ga with the syntax

[x fval] = ga(@fitnessfun, nvars)

The input arguments to ga are

• @fitnessfun — A function handle to the M-file that computes the fitness
function. “Writing M-Files for Functions You Want to Optimize” on page
1-3 explains how to write this M-file.

• nvars — The number of independent variables for the fitness function.

The output arguments are

• x — The final point

• fval — The value of the fitness function at x

For a description of additional input and output arguments, see the reference
page for ga.

You can run the example described in “Example: Rastrigin’s Function” on
page 3-7 from the command line by entering

[x fval] = ga(@rastriginsfcn, 2)

6-23

6 Using the Genetic Algorithm

This returns

x =
0.0027 -0.0052

fval =
0.0068

Additional Output Arguments
To get more information about the performance of the genetic algorithm, you
can call ga with the syntax

[x fval exitflag output population scores] = ga(@fitnessfcn, nvars)

Besides x and fval, this function returns the following additional output
arguments:

• exitflag — Integer value corresponding to the reason the algorithm
terminated

• output — Structure containing information about the performance of the
algorithm at each generation

• population — Final population

• scores — Final scores

See the ga reference page for more information about these arguments.

Setting Options for ga at the Command Line
You can specify any of the options that are available in the Genetic Algorithm
Tool by passing an options structure as an input argument to ga using the
syntax

[x fval] = ga(@fitnessfun, nvars, [],[],[],[],[],[],[],options)

This syntax does not specify any linear equality, linear inequality, or nonlinear
constraints.

6-24

Using the Genetic Algorithm from the Command Line

You create the options structure using the function gaoptimset.

options = gaoptimset

This returns the structure options with the default values for its fields.

options =
PopulationType: 'doubleVector'

PopInitRange: [2x1 double]
PopulationSize: 20

EliteCount: 2
CrossoverFraction: 0.8000

MigrationDirection: 'forward'
MigrationInterval: 20
MigrationFraction: 0.2000

Generations: 100
TimeLimit: Inf

FitnessLimit: -Inf
StallGenLimit: 50

StallTimeLimit: 20
TolFun: 1.0000e-006
TolCon: 1.0000e-006

InitialPopulation: []
InitialScores: []

InitialPenalty: 10
PenaltyFactor: 100
PlotInterval: 1
CreationFcn: @gacreationuniform

FitnessScalingFcn: @fitscalingrank
SelectionFcn: @selectionstochunif
CrossoverFcn: @crossoverscattered
MutationFcn: @mutationgaussian

HybridFcn: []
Display: 'final'

PlotFcns: []
OutputFcns: []
Vectorized: 'off'

The function ga uses these default values if you do not pass in options as an
input argument.

6-25

6 Using the Genetic Algorithm

The value of each option is stored in a field of the options structure, such as
options.PopulationSize. You can display any of these values by entering
options followed by the name of the field. For example, to display the size
of the population for the genetic algorithm, enter

options.PopulationSize

ans =

20

To create an options structure with a field value that is different from the
default — for example to set PopulationSize to 100 instead of its default
value 20 — enter

options = gaoptimset('PopulationSize', 100)

This creates the options structure with all values set to their defaults except
for PopulationSize, which is set to 100.

If you now enter,

ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

ga runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in the options structure,
such as setting PlotFcns to @gaplotbestf, which plots the best fitness
function value at each generation, call gaoptimset with the syntax

options = gaoptimset(options, 'PlotFcns', @plotbestf)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @plotbestf. Note that if you omit the input argument
options, gaoptimset resets PopulationSize to its default value 20.

You can also set both PopulationSize and PlotFcns with the single command

options = gaoptimset('PopulationSize',100,'PlotFcns',@plotbestf)

6-26

Using the Genetic Algorithm from the Command Line

Using Options and Problems from the Genetic
Algorithm Tool
As an alternative to creating an options structure using gaoptimset, you can
set the values of options in the Genetic Algorithm Tool and then export the
options to a structure in the MATLAB workspace, as described in “Exporting
Options and Problems” on page 6-15. If you export the default options in
the Genetic Algorithm Tool, the resulting structure options has the same
settings as the default structure returned by the command

options = gaoptimset

If you export a problem structure, ga_problem, from the Genetic Algorithm
Tool, you can apply ga to it using the syntax

[x fval] = ga(ga_problem)

The problem structure contains the following fields:

• fitnessfcn — Fitness function

• nvars — Number of variables for the problem

• Aineq — Matrix for inequality constraints

• Bineq — Vector for inequality constraints

• Aeq — Matrix for equality constraints

• Beq — Vector for equality constraints

• LB — Lower bound on x

• UB — Upper bound on x

• nonlcon — Nonlinear constraint function

• options — Options structure

Reproducing Your Results
Because the genetic algorithm is stochastic—that is, it makes random
choices—you get slightly different results each time you run the genetic
algorithm. The algorithm uses the MATLAB uniform and normal random
number generators, rand and randn, to makes random choices at each
iteration. Each time ga calls rand and randn, their states are changed, so that

6-27

6 Using the Genetic Algorithm

the next time they are called, they return different random numbers. This is
why the output of ga differs each time you run it.

If you need to reproduce your results exactly, you can call ga with an output
argument that contains the current states of rand and randn and then reset
the states to these values before running ga again. For example, to reproduce
the output of ga applied to Rastrigin’s function, call ga with the syntax

[x fval exitflag output] = ga(@rastriginsfcn, 2);

Suppose the results are

x =

0.0027 -0.0052
fval =

0.0068

The states of rand and randn are stored in the first two fields of output.

output =

randstate: [35x1 double]
randnstate: [2x1 double]

generations: 100
funccount: 2000

message: [1x64 char]

Then, reset the states, by entering

rand('twister', output.randstate);
randn('state', output.randnstate);

If you now run ga a second time, you get the same results.

Note If you do not need to reproduce your results, it is better not to set the
states of rand and randn, so that you get the benefit of the randomness in
the genetic algorithm.

6-28

Using the Genetic Algorithm from the Command Line

Resuming ga from the Final Population of a Previous
Run
By default, ga creates a new initial population each time you run it. However,
you might get better results by using the final population from a previous run
as the initial population for a new run. To do so, you must have saved the final
population from the previous run by calling ga with the syntax

[x, fval, exitflag, output, final_pop] = ga(@fitnessfcn, nvars);

The last output argument is the final population. To run ga using final_pop
as the initial population, enter

options = gaoptimset('InitialPop', final_pop);
[x, fval, exitflag, output, final_pop2] = ...

ga(@fitnessfcn, nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as
the initial population for a third run.

Running ga from an M-File
The command-line interface enables you to run the genetic algorithm many
times, with different options settings, using an M-file. For example, you can
run the genetic algorithm with different settings for Crossover fraction to
see which one gives the best results. The following code runs the function ga
21 times, varying options.CrossoverFraction from 0 to 1 in increments of
0.05, and records the results.

options = gaoptimset('Generations',300);
rand('twister', 71); % These two commands are only included to
randn('state', 59); % make the results reproducible.
record=[];
for n=0:.05:1
options = gaoptimset(options,'CrossoverFraction', n);
[x fval]=ga(@rastriginsfcn, 10,[],[],[],[],[],[],[],options);
record = [record; fval];

end

You can plot the values of fval against the crossover fraction with the
following commands:

6-29

6 Using the Genetic Algorithm

plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')

The following plot appears.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Crossover Fraction

fv
al

The plot indicates that you get the best results by setting
options.CrossoverFraction to a value somewhere between 0.6 and 0.95.

You can get a smoother plot of fval as a function of the crossover fraction by
running ga 20 times and averaging the values of fval for each crossover
fraction. The following figure shows the resulting plot.

6-30

Using the Genetic Algorithm from the Command Line

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

Crossover Fraction

A
ve

ra
ge

 fv
al

 fo
r

20
 R

un
s

The plot narrows the range of best choices for options.CrossoverFraction
to values between 0.7 and 0.9.

6-31

6 Using the Genetic Algorithm

Genetic Algorithm Examples

In this section...

“Improving Your Results” on page 6-32

“Population Diversity” on page 6-32

“Fitness Scaling” on page 6-37

“Selection” on page 6-40

“Reproduction Options” on page 6-41

“Mutation and Crossover” on page 6-41

“Setting the Amount of Mutation” on page 6-42

“Setting the Crossover Fraction” on page 6-44

“Comparing Results for Varying Crossover Fractions” on page 6-48

“Global vs. Local Minima” on page 6-50

“Using a Hybrid Function” on page 6-54

“Setting the Maximum Number of Generations” on page 6-57

“Vectorizing the Fitness Function” on page 6-58

“Constrained Minimization Using ga” on page 6-59

Improving Your Results
To get the best results from the genetic algorithm, you usually need to
experiment with different options. Selecting the best options for a problem
involves trial and error. This section describes some ways you can change
options to improve results. For a complete description of the available options,
see “Importing and Exporting Options and Problems” on page 5-15.

Population Diversity
One of the most important factors that determines the performance of the
genetic algorithm performs is the diversity of the population. If the average
distance between individuals is large, the diversity is high; if the average
distance is small, the diversity is low. Getting the right amount of diversity is

6-32

Genetic Algorithm Examples

a matter of trial and error. If the diversity is too high or too low, the genetic
algorithm might not perform well.

This section explains how to control diversity by setting the Initial range of
the population. “Setting the Amount of Mutation” on page 6-42 describes how
the amount of mutation affects diversity.

This section also explains how to set the population size.

Example — Setting the Initial Range
By default, the Genetic Algorithm Tool creates a random initial population
using the creation function. You can specify the range of the vectors in the
initial population in the Initial range field in Population options.

Note The initial range only restricts the range of the points in the initial
population by specifying the lower and upper bounds. Subsequent generations
can contain points whose entries do not lie in the initial range. Additionally,
the upper and lower bounds can be adjusted by setting the Bounds fields
in the Constraints panel.

If you know approximately where the solution to a problem lies, you should
specify the initial range so that it contains your guess for the solution.
However, the genetic algorithm can find the solution even if it does not lie in
the initial range, provided that the populations have enough diversity.

The following example shows how the initial range affects the performance
of the genetic algorithm. The example uses Rastrigin’s function, described
in “Example: Rastrigin’s Function” on page 3-7. The minimum value of the
function is 0, which occurs at the origin.

To run the example, make the following settings in the Genetic Algorithm Tool:

• Set Fitness function to @rastriginsfcn.

• Set Number of variables to 2.

• Select Best fitness in the Plots pane.

• Select Distance in the Plots pane.

6-33

6 Using the Genetic Algorithm

• Set Initial range to [1; 1.1].

Then click Start. The genetic algorithm returns the best fitness function
value of approximately 2 and displays the plots in the following figure.

10 20 30 40 50 60 70 80 90 100
10

0.3

10
0.4

10
0.5

10
0.6

Generation

F
itn

es
s

va
lu

e
Best: 1.9899 Mean: 1.9911

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

generation

Average Distance between individuals

The upper plot, which displays the best fitness at each generation, shows
little progress in lowering the fitness value. The lower plot shows the average
distance between individuals at each generation, which is a good measure of
the diversity of a population. For this setting of initial range, there is too little
diversity for the algorithm to make progress.

Next, try setting Initial range to [1; 100] and running the algorithm. The
genetic algorithm returns the best fitness value of approximately 3.9 and
displays the following plots.

6-34

Genetic Algorithm Examples

10 20 30 40 50 60 70 80 90 100
10

0

10
5

Generation

F
itn

es
s

va
lu

e

Best: 3.8861 Mean: 10.2159

10 20 30 40 50 60 70 80 90 100
0

50

100

150

generation

Average Distance between individuals

This time, the genetic algorithm makes progress, but because the average
distance between individuals is so large, the best individuals are far from
the optimal solution.

Finally, set Initial range to [1; 2] and run the genetic algorithm. This
returns the best fitness value of approximately .012 and displays the following
plots.

6-35

6 Using the Genetic Algorithm

10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

Generation

F
itn

es
s

va
lu

e

Best: 0.011658 Mean: 0.062498

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

generation

Average Distance between individuals

The diversity in this case is better suited to the problem, so the genetic
algorithm returns a much better result than in the previous two cases.

Setting the Population Size
The Population size field in Population options determines the size of the
population at each generation. Increasing the population size enables the
genetic algorithm to search more points and thereby obtain a better result.
However, the larger the population size, the longer the genetic algorithm
takes to compute each generation.

Note You should set Population size to be at least the value of Number
of variables, so that the individuals in each population span the space
being searched.

6-36

Genetic Algorithm Examples

You can experiment with different settings for Population size that return
good results without taking a prohibitive amount of time to run.

Fitness Scaling
Fitness scaling converts the raw fitness scores that are returned by the
fitness function to values in a range that is suitable for the selection function.
The selection function uses the scaled fitness values to select the parents of
the next generation. The selection function assigns a higher probability of
selection to individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic
algorithm. If the scaled values vary too widely, the individuals with the
highest scaled values reproduce too rapidly, taking over the population gene
pool too quickly, and preventing the genetic algorithm from searching other
areas of the solution space. On the other hand, if the scaled values vary only a
little, all individuals have approximately the same chance of reproduction and
the search will progress very slowly.

The default fitness scaling option, Rank, scales the raw scores based on the
rank of each individual instead of its score. The rank of an individual is its
position in the sorted scores: the rank of the most fit individual is 1, the next
most fit is 2, and so on. The rank scaling function assigns scaled values so that

• The scaled value of an individual with rank n is proportional to .

• The sum of the scaled values over the entire population equals the number
of parents needed to create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20
individuals, sorted in increasing order.

6-37

6 Using the Genetic Algorithm

0 5 10 15 20
50

60

70

80

90

100

110

120

130

140
Raw Scores of Population

S
co

re

Sorted individuals

The following plot shows the scaled values of the raw scores using rank
scaling.

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Scaled Values Using Rank Scaling

S
ca

le
d

va
lu

e

Sorted individuals

Because the algorithm minimizes the fitness function, lower raw scores have
higher scaled values. Also, because rank scaling assigns values that depend

6-38

Genetic Algorithm Examples

only on an individual’s rank, the scaled values shown would be the same for
any population of size 20 and number of parents equal to 32.

Comparing Rank and Top Scaling
To see the effect of scaling, you can compare the results of the genetic
algorithm using rank scaling with one of the other scaling options, such as
Top. By default, top scaling assigns 40 percent of the fittest individuals to the
same scaled value and assigns the rest of the individuals to value 0. Using
the default selection function, only 40 percent of the fittest individuals can
be selected as parents.

The following figure compares the scaled values of a population of size 20 with
number of parents equal to 32 using rank and top scaling.

0 5 10 15 20

0

1

2

3

4

5

6

7

8

Comparison of Rank and Top Scaling

Sorted individuals

S
ca

le
d

va
lu

e

Rank scaling
Top scaling

Because top scaling restricts parents to the fittest individuals, it creates
less diverse populations than rank scaling. The following plot compares the

6-39

6 Using the Genetic Algorithm

variances of distances between individuals at each generation using rank
and top scaling.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Variance of Distance Between Individuals Using Rank and Top Scaling

Generation

V
ar

ia
nc

e

Variance using rank scaling
Variance using top scaling

Selection
The selection function chooses parents for the next generation based on their
scaled values from the fitness scaling function. An individual can be selected
more than once as a parent, in which case it contributes its genes to more than
one child. The default selection option, Stochastic uniform, lays out a line
in which each parent corresponds to a section of the line of length proportional
to its scaled value. The algorithm moves along the line in steps of equal size.
At each step, the algorithm allocates a parent from the section it lands on.

A more deterministic selection option is Remainder, which performs two steps:

• In the first step, the function selects parents deterministically according
to the integer part of the scaled value for each individual. For example,
if an individual’s scaled value is 2.3, the function selects that individual
twice as a parent.

6-40

Genetic Algorithm Examples

• In the second step, the selection function selects additional parents using
the fractional parts of the scaled values, as in stochastic uniform selection.
The function lays out a line in sections, whose lengths are proportional to
the fractional part of the scaled value of the individuals, and moves along
the line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can
occur using Top scaling, the selection is entirely deterministic.

Reproduction Options
Reproduction options control how the genetic algorithm creates the next
generation. The options are

• Elite count — The number of individuals with the best fitness values
in the current generation that are guaranteed to survive to the next
generation. These individuals are called elite children. The default value
of Elite count is 2.

When Elite count is at least 1, the best fitness value can only decrease
from one generation to the next. This is what you want to happen, since the
genetic algorithm minimizes the fitness function. Setting Elite count to a
high value causes the fittest individuals to dominate the population, which
can make the search less effective.

• Crossover fraction — The fraction of individuals in the next generation,
other than elite children, that are created by crossover. “Setting the
Crossover Fraction” on page 6-44 describes how the value of Crossover
fraction affects the performance of the genetic algorithm.

Mutation and Crossover
The genetic algorithm uses the individuals in the current generation to create
the children that make up the next generation. Besides elite children, which
correspond to the individuals in the current generation with the best fitness
values, the algorithm creates

• Crossover children by selecting vector entries, or genes, from a pair of
individuals in the current generation and combines them to form a child

• Mutation children by applying random changes to a single individual in the
current generation to create a child

6-41

6 Using the Genetic Algorithm

Both processes are essential to the genetic algorithm. Crossover enables the
algorithm to extract the best genes from different individuals and recombine
them into potentially superior children. Mutation adds to the diversity of
a population and thereby increases the likelihood that the algorithm will
generate individuals with better fitness values.

See “Creating the Next Generation” on page 3-21 for an example of how the
genetic algorithm applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as
follows:

• Elite count, in Reproduction options, specifies the number of elite
children.

• Crossover fraction, in Reproduction options, specifies the fraction of
the population, other than elite children, that are crossover children.

For example, if the Population size is 20, the Elite count is 2, and the
Crossover fraction is 0.8, the numbers of each type of children in the next
generation are as follows:

• There are two elite children.

• There are 18 individuals other than elite children, so the algorithm rounds
0.8*18 = 14.4 to 14 to get the number of crossover children.

• The remaining four individuals, other than elite children, are mutation
children.

Setting the Amount of Mutation
The genetic algorithm applies mutations using the option that you specify
on the Mutation function pane. The default mutation option, Gaussian,
adds a random number, or mutation, chosen from a Gaussian distribution,
to each entry of the parent vector. Typically, the amount of mutation, which
is proportional to the standard deviation of the distribution, decreases at
each new generation. You can control the average amount of mutation that
the algorithm applies to a parent in each generation through the Scale and
Shrink options:

6-42

Genetic Algorithm Examples

• Scale controls the standard deviation of the mutation at the first
generation, which is Scale multiplied by the range of the initial population,
which you specify by the Initial range option.

• Shrink controls the rate at which the average amount of mutation
decreases. The standard deviation decreases linearly so that its final
value equals 1 - Shrink times its initial value at the first generation. For
example, if Shrink has the default value of 1, then the amount of mutation
decreases to 0 at the final step.

You can see the effect of mutation by selecting the plot options Distance and
Range, and then running the genetic algorithm on a problem such as the
one described in “Example: Rastrigin’s Function” on page 3-7. The following
figure shows the plot.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

generation

Average Distance between individuals

0 20 40 60 80 100 120
0

50

100

150

200

generation

Best, Worst, and Mean scores

The upper plot displays the average distance between points in each
generation. As the amount of mutation decreases, so does the average distance
between individuals, which is approximately 0 at the final generation. The
lower plot displays a vertical line at each generation, showing the range
from the smallest to the largest fitness value, as well as mean fitness value.
As the amount of mutation decreases, so does the range. These plots show

6-43

6 Using the Genetic Algorithm

that reducing the amount of mutation decreases the diversity of subsequent
generations.

For comparison, the following figure shows the plots for Distance and Range
when you set Shrink to 0.5.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

generation

Average Distance between individuals

0 20 40 60 80 100 120
0

50

100

150

200

250

generation

Best, Worst, and Mean scores

With Shrink set to 0.5, the average amount of mutation decreases by a factor
of 1/2 by the final generation. As a result, the average distance between
individuals decreases by approximately the same factor.

Setting the Crossover Fraction
The Crossover fraction field, in the Reproduction options, specifies the
fraction of each population, other than elite children, that are made up of
crossover children. A crossover fraction of 1 means that all children other than
elite individuals are crossover children, while a crossover fraction of 0 means
that all children are mutation children. The following example show that
neither of these extremes is an effective strategy for optimizing a function.

6-44

Genetic Algorithm Examples

The example uses the fitness function whose value at a point is the sum of the
absolute values of the coordinates at the points. That is,

You can define this function as an anonymous function by setting Fitness
function to

@(x) sum(abs(x))

To run the example,

• Set Fitness function to @(x) sum(abs(x)).

• Set Number of variables to 10.

• Set Initial range to [-1; 1].

• Select Best fitness and Distance in the Plots pane.

Run the example with the default value of 0.8 for Crossover fraction. This
returns the best fitness value of approximately 0.2 and displays the following
plots.

6-45

6 Using the Genetic Algorithm

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Generation

F
itn

es
s

va
lu

e

Best: 0.23492 Mean: 0.48445

10 20 30 40 50 60 70 80 90 100
0

2

4

6

generation

Average Distance between individuals

Crossover Without Mutation
To see how the genetic algorithm performs when there is no mutation, set
Crossover fraction to 1.0 and click Start. This returns the best fitness
value of approximately 1.3 and displays the following plots.

6-46

Genetic Algorithm Examples

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

Generation

F
itn

es
s

va
lu

e

Best: 1.3161 Mean: 1.3161

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

generation

Average Distance between individuals

In this case, the algorithm selects genes from the individuals in the initial
population and recombines them. The algorithm cannot create any new genes
because there is no mutation. The algorithm generates the best individual
that it can using these genes at generation number 8, where the best fitness
plot becomes level. After this, it creates new copies of the best individual,
which are then are selected for the next generation. By generation number
17, all individuals in the population are the same, namely, the best individual.
When this occurs, the average distance between individuals is 0. Since the
algorithm cannot improve the best fitness value after generation 8, it stalls
after 50 more generations, because Stall generations is set to 50.

Mutation Without Crossover
To see how the genetic algorithm performs when there is no crossover, set
Crossover fraction to 0 and click Start. This returns the best fitness value
of approximately 3.5 and displays the following plots.

6-47

6 Using the Genetic Algorithm

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Generation

F
itn

es
s

va
lu

e

Best: 3.493 Mean: 11.2376

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

generation

Average Distance between individuals

In this case, the random changes that the algorithm applies never improve the
fitness value of the best individual at the first generation. While it improves
the individual genes of other individuals, as you can see in the upper plot by
the decrease in the mean value of the fitness function, these improved genes
are never combined with the genes of the best individual because there is no
crossover. As a result, the best fitness plot is level and the algorithm stalls at
generation number 50.

Comparing Results for Varying Crossover Fractions
The demo deterministicstudy.m, which is included in the toolbox, compares
the results of applying the genetic algorithm to Rastrigin’s function with
Crossover fraction set to 0, .2, .4, .6, .8, and 1. The demo runs for 10
generations. At each generation, the demo plots the means and standard
deviations of the best fitness values in all the preceding generations, for each
value of the Crossover fraction.

6-48

Genetic Algorithm Examples

To run the demo, enter

deterministicstudy

at the MATLAB prompt. When the demo is finished, the plots appear as in
the following figure.

CrossoverFraction

Ite
ra

tio
n

After 10 iIterations

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
0

20

40

60

CrossoverFraction

S
co

re
 M

ea
n

an
d

S
td

The lower plot shows the means and standard deviations of the best fitness
values over 10 generations, for each of the values of the crossover fraction.
The upper plot shows a color-coded display of the best fitness values in each
generation.

For this fitness function, setting Crossover fraction to 0.8 yields the
best result. However, for another fitness function, a different setting for
Crossover fraction might yield the best result.

6-49

6 Using the Genetic Algorithm

Global vs. Local Minima
Sometimes the goal of an optimization is to find the global minimum or
maximum of a function—a point where the function value is smaller or larger
at any other point in the search space. However, optimization algorithms
sometimes return a local minimum—a point where the function value is
smaller than at nearby points, but possibly greater than at a distant point
in the search space. The genetic algorithm can sometimes overcome this
deficiency with the right settings.

As an example, consider the following function

The following figure shows a plot of the function.

−10 −5 0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

The function has two local minima, one at x = 0, where the function value is
-1, and the other at x = 21, where the function value is -1 - 1/e. Since the latter
value is smaller, the global minimum occurs at x = 21.

6-50

Genetic Algorithm Examples

Running the Genetic Algorithm on the Example
To run the genetic algorithm on this example,

1 Copy and paste the following code into a new M-file in the MATLAB Editor.

function y = two_min(x)
if x<=20

y = -exp(-(x/20).^2);
else

y = -exp(-1)+(x-20)*(x-22);
end

2 Save the file as two_min.m in a directory on the MATLAB path.

3 In the Genetic Algorithm Tool,

• Set Fitness function to @two_min.

• Set Number of variables to 1.

• Click Start.

The genetic algorithm returns a point very close to the local minimum at x = 0.

The following custom plot shows why the algorithm finds the local minimum
rather than the global minimum. The plot shows the range of individuals in
each generation and the best individual.

6-51

6 Using the Genetic Algorithm

10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Generation

B
es

t i
nd

iv
id

ua
l

Best: 0.00028487

Note that all individuals are between -2 and 2.5. While this range is larger
than the default Initial range of [0;1], due to mutation, it is not large
enough to explore points near the global minimum at x = 21.

One way to make the genetic algorithm explore a wider range of points—that
is, to increase the diversity of the populations—is to increase the Initial
range. The Initial range does not have to include the point x = 21, but it
must be large enough so that the algorithm generates individuals near x = 21.
Set Initial range to [0;15] as shown in the following figure.

6-52

Genetic Algorithm Examples

Then click Start. The genetic algorithm returns a point very close to 21.

This time, the custom plot shows a much wider range of individuals. By the
second generation there are individuals greater than 21, and by generation
12, the algorithm finds a best individual that is approximately equal to 21.

6-53

6 Using the Genetic Algorithm

10 20 30 40 50 60 70 80 90 100
−60

−40

−20

0

20

40

60

80

Generation

B
es

t i
nd

iv
id

ua
l

Best: 20.9876

Using a Hybrid Function
A hybrid function is an optimization function that runs after the genetic
algorithm terminates in order to improve the value of the fitness function.
The hybrid function uses the final point from the genetic algorithm as its
initial point. You can specify a hybrid function in Hybrid function options.

This example uses the function fminunc, an unconstrained minimization
function in the Optimization Toolbox. The example first runs the genetic
algorithm to find a point close to the optimal point and then uses that point as
the initial point for fminunc.

The example finds the minimum of Rosenbrock’s function, which is defined by

The following figure shows a plot of Rosenbrock’s function.

6-54

Genetic Algorithm Examples

−2
−1

0
1

2

−1

0

1

2

3
0

500

1000

1500

2000

2500

3000

#����������$�$

The toolbox provides an M-file, dejong2fcn.m, that computes the function.
To see a demo of this example, enter

hybriddemo

at the MATLAB prompt.

To explore the example, first enter gatool to open the Genetic Algorithm
Tool and enter the following settings:

• Set Fitness function to @dejong2fcn.

• Set Number of variables to 2.

• Set Population size to 10.

6-55

6 Using the Genetic Algorithm

Before adding a hybrid function, try running the genetic algorithm by itself,
by clicking Start. The genetic algorithm displays the following results in the
Status and results pane.

The final point is close to the true minimum at (1, 1). You can improve this
result by setting Hybrid function to fminunc in the Hybrid function
options.

The function fminunc uses the final point of one run, or step, of the genetic
algorithm as the initial point of the next step to return a more accurate
result when the genetic algorithm terminates, as shown in the Status and
results pane.

6-56

Genetic Algorithm Examples

Setting the Maximum Number of Generations
The Generations option in Stopping criteria determines the maximum
number of generations the genetic algorithm runs for—see “Stopping
Conditions for the Algorithm” on page 3-23. Increasing the Generations
option often improves the final result.

As an example, change the settings in the Genetic Algorithm Tool as follows:

• Set Fitness function to @rastriginsfcn.

• Set Number of variables to 10.

• Select Best fitness in the Plots pane.

• Set Generations to Inf.

• Set Stall generations to Inf.

• Set Stall time to Inf.

Then run the genetic algorithm for approximately 300 generations and click
Stop. The following figure shows the resulting best fitness plot after 300
generations.

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Generation

F
itn

es
s

va
lu

e

Best: 5.0444 Mean: 48.7926

��������
!	���������

�

6-57

6 Using the Genetic Algorithm

Note that the algorithm stalls at approximately generation number 170—that
is, there is no immediate improvement in the fitness function after generation
170. If you restore Stall generations to its default value of 50, the algorithm
would terminate at approximately generation number 230. If the genetic
algorithm stalls repeatedly with the current setting for Generations, you
can try increasing both the Generations and Stall generations options
to improve your results. However, changing other options might be more
effective.

Note When Mutation function is set to Gaussian, increasing the value
of Generations might actually worsen the final result. This can occur
because the Gaussian mutation function decreases the average amount of
mutation in each generation by a factor that depends on the value specified
in Generations. Consequently, the setting for Generations affects the
behavior of the algorithm.

Vectorizing the Fitness Function
The genetic algorithm usually runs faster if you vectorize the fitness function.
This means that the genetic algorithm only calls the fitness function once, but
expects the fitness function to compute the fitness for all individuals in the
current population at once. To vectorize the fitness function,

• Write the M-file that computes the function so that it accepts a matrix with
arbitrarily many rows, corresponding to the individuals in the population.
For example, to vectorize the function

f x x x x x x x x(,)1 2 1
2

1 2 1 2
2

22 6 6= − + + −

write the M-file using the following code:

z =x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).^2 - 6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1)
is a vector. The .^ and .* operators perform element-wise operations on
the vectors.

• In the Vectorize pane, set the Fitness function is vectorized option
to On.

6-58

Genetic Algorithm Examples

Note The fitness function must accept an arbitrary number of rows to use
the Vectorize option.

The following comparison, run at the command line, shows the improvement
in speed with Vectorize set to On.

tic;ga(@rastriginsfcn,20);toc

elapsed_time =

4.3660
options=gaoptimset('Vectorize','on');
tic;ga(@rastriginsfcn,20,[],[],[],[],[],[],[],options);toc

elapsed_time =

0.5810

Constrained Minimization Using ga
Suppose you want to minimize the simple fitness function of two variables
x1 and x2,

min () ()
x

f x x x x= −() + −100 11
2

2
2

1
2

subject to the following nonlinear inequality constraints and bounds

x x x x
x x

x
x

1 2 1 2

1 2

1

2

1 5 0
10 0
0 1
0 13

⋅ + − + ≤
− ⋅ ≤

≤ ≤
≤ ≤

. (nonlinear constraiint)
(nonlinear constraint)
(bound)
(bound)

Begin by creating the fitness and constraint functions. First, create an M-file
named simple_fitness.m as follows:

function y = simple_fitness(x)
y = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2;

6-59

6 Using the Genetic Algorithm

The genetic algorithm function, ga, assumes the fitness function will take one
input x, where x has as many elements as the number of variables in the
problem. The fitness function computes the value of the function and returns
that scalar value in its one return argument, y.

Then create an M-file, simple_constraint.m, containing the constraints

function [c, ceq] = simple_constraint(x)
c = [1.5 + x(1)*x(2) + x(1) - x(2);...
-x(1)*x(2) + 10];
ceq = [];

The ga function assumes the constraint function will take one input x, where
x has as many elements as the number of variables in the problem. The
constraint function computes the values of all the inequality and equality
constraints and returns two vectors, c and ceq, respectively.

To minimize the fitness function, you need to pass a function handle to the
fitness function as the first argument to the ga function, as well as specifying
the number of variables as the second argument. Lower and upper bounds
are provided as LB and UB respectively. In addition, you also need to pass a
function handle to the nonlinear constraint function.

ObjectiveFunction = @simple_fitness;

nvars = 2; % Number of variables

LB = [0 0]; % Lower bound

UB = [1 13]; % Upper bound

ConstraintFunction = @simple_constraint;

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,ConstraintFunction)

Warning: 'mutationgaussian' mutation function

is for unconstrained minimization only;

using @mutationadaptfeasible mutation function.

Set @mutationadaptfeasible as MutationFcn options

using GAOPTIMSET.

Optimization terminated: current tolerance on f(x) 1e-007

is less than options.TolFun and constraint violation is

less than options.TolCon.

6-60

Genetic Algorithm Examples

x =

0.8122 12.3122

fval =

1.3578e+004

Note For the constrained minimization problem, the ga function changed
the mutation function to @mutationadaptfeasible. The default mutation
function, @mutationgaussian, is only appropriate for unconstrained
minimization problems.

The genetic algorithm solver handles linear constraints and bounds differently
from nonlinear constraints. All the linear constraints and bounds are satisfied
throughout the optimization. However, ga may not satisfy all the nonlinear
constraints at every generation. If ga converges to a solution, the nonlinear
constraints will be satisfied at that solution.

ga uses the mutation and crossover functions to produce new individuals at
every generation. ga satisfies linear and bound constraints by using mutation
and crossover functions that only generate feasible points. For example, in
the previous call to ga, the default mutation function mutationguassian will
not satisfy the linear constraints and so the mutationadaptfeasible is used
instead. If you provide a custom mutation function, this custom function must
only generate points that are feasible with respect to the linear and bound
constraints. All the crossover functions in the toolbox generate points that
satisfy the linear constraints and bounds except the crossoverheuristic
function.

Specify mutationadaptfeasible as the mutation function for the
minimization problem by using the gaoptimset function.

options = gaoptimset('MutationFcn',@mutationadaptfeasible);

Next run the ga solver.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB,ConstraintFunction,options)

6-61

6 Using the Genetic Algorithm

Optimization terminated: current tolerance on f(x) 1e-007 is less than options.TolFun

and constraint violation is less than options.TolCon.

x =

0.8122 12.3122

fval =

1.3578e+004

Now, use the gaoptimset function to create an options structure that will
select two plot functions. The first plot function is gaplotbestf, which plots
the best and mean score of the population at every generation. The second
plot function is gaplotmaxconstr, which plots the maximum constraint
violation of nonlinear constraints at every generation. You can also visualize
the progress of the algorithm by displaying information to the command
window using the 'Display' option.

options = gaoptimset(options,'PlotFcns',{@gaplotbestf,@gaplotmaxconstr},'Display','iter');

Rerun the ga solver.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],...

LB,UB,ConstraintFunction,options)

Best max Stall

Generation f-count f(x) constraint Generations

1 849 14915.8 0 0

2 1567 13578.3 0 0

3 2334 13578.3 0 1

4 3043 13578.3 0 2

5 3752 13578.3 0 3

Optimization terminated: current tolerance on f(x) 1e-009

is less than options.TolFun and constraint violation is

less than options.TolCon.

6-62

Genetic Algorithm Examples

x =

0.8122 12.3123

fval =

1.3578e+004

You can provide a start point for the minimization to the ga function by
specifying the InitialPopulation option. The ga function will use the
first individual from InitialPopulation as a start point for a constrained
minimization.

X0 = [0.5 0.5]; % Start point (row vector)

options = gaoptimset(options,'InitialPopulation',X0);

Now, rerun the ga solver.

[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],...

LB,UB,ConstraintFunction,options)

Best max Stall

Generation f-count f(x) constraint Generations

1 965 13579.6 0 0

2 1728 13578.2 1.776e-015 0

3 2422 13578.2 0 0

6-63

6 Using the Genetic Algorithm

Optimization terminated: current tolerance on f(x) 1e-007

is less than options.TolFun and constraint violation is

less than options.TolCon.

x =

0.8122 12.3122

fval =

1.3578e+004

6-64

Parameterizing Functions Called by ga

Parameterizing Functions Called by ga

In this section...

“Using Additional Parameters” on page 6-65

“Parameterizing Functions Using Anonymous Functions with ga” on page
6-65

“Parameterizing a Function Using a Nested Function with ga” on page 6-66

Using Additional Parameters
Sometimes you might want to write functions that are called by ga that have
additional parameters to the independent variable. For example, suppose you
want to minimize the following function:

for different values of a, b, and c. Because ga accepts a fitness function that
depends only on x, you must provide the additional parameters a, b, and
c to the function before calling ga.

The following examples show how to parameterize the objective function, but
you can use the same methods to parameterize any user-defined functions
called by ga, patternsearch, simulannealbnd, or threshacceptbnd.

Parameterizing Functions Using Anonymous
Functions with ga
To parameterize your function, first write an M-file containing the following
code:

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

(-c + c*x(2)^2)*x(2)^2;

Save the M- file as parameterfun.m in a directory on the MATLAB path.

6-65

6 Using the Genetic Algorithm

Now, suppose you want to minimize the function for the parameter values
a = 4, b =2.1, and c = 4. To do so, define a function handle to an anonymous
function by entering the following commands at the MATLAB prompt:

a = 4; b = 2.1; c = 4; % Define parameter values
fitfun = @(x) parameterfun(x,a,b,c);
NVARS = 3;

If you are using the Genetic Algorithm Tool,

• Set Fitness function to fitfun.

• Set Number of variables to NVARS.

a = 3.6; b = 2.4; c = 5; % Define parameter values
fitfun = @(x) parameterfun(x,a,b,c);

Parameterizing a Function Using a Nested Function
with ga
As an alternative to parameterizing the objective function as an anonymous
function, you can write a single M-file that

• Accepts a, b, c and NVARS as inputs.

• Contains the fitness function as a nested function.

• Calls ga.

The following shows the code for the M-file.

function [x fval] = runga(a,b,c,NVARS)
[x, fval] = ga(@nestedfun,NVARS);
% Nested function that computes the fitness function

function y = nestedfun(x)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...
(-c + c*x(2)^2)*x(2)^2;

end
end

Note that the fitness function is computed in the nested function nestedfun,
which has access to the variables a, b, and c. To run the optimization, enter

6-66

Parameterizing Functions Called by ga

[x fval] = runga(a,b,c,NVARS)

This returns

Optimization terminated: average change in the fitness
value less than options.TolFun.

x =

-0.1302 0.7170 0.2272

fval =

-1.0254

6-67

6 Using the Genetic Algorithm

6-68

7

Using the Simulated
Annealing and Threshold
Acceptance Algorithms

Using the Simulated Annealing and
Threshold Acceptance Algorithms
from the Command Line (p. 7-2)

Explains how to use the simulated
annealing and threshold acceptance
algorithms at the command line.

Simulated Annealing and Threshold
Acceptance Examples (p. 7-7)

Links to examples of using the
simulated annealing and threshold
acceptance algorithms.

7 Using the Simulated Annealing and Threshold Acceptance Algorithms

Using the Simulated Annealing and Threshold Acceptance
Algorithms from the Command Line

In this section...

“Running simulannealbnd and threshacceptbnd with the Default Options”
on page 7-2

“Setting Options for simulannealbnd and threshacceptbnd at the Command
Line” on page 7-3

“Reproducing Your Results” on page 7-5

Running simulannealbnd and threshacceptbnd with
the Default Options
To run either the simulated annealing or threshold acceptance algorithms
with the default options, call the corresponding function with the syntax

[x, fval] = simulannealbnd(@objfun, x0)
[x, fval] = threshacceptbnd(@objfun, x0)

The input arguments to simulannealbnd and threshacceptbnd are

• @objfun — A function handle to the M-file that computes the objective
function. “Writing M-Files for Functions You Want to Optimize” on page
1-3 explains how to write this M-file.

• x0 — The initial guess of the optimal argument to the objective function.

The output arguments are

• x — The final point.

• fval — The value of the objective function at x.

For a description of additional input and output arguments, see the reference
pages for simulannealbnd and threshacceptbnd.

You can run the example described in “Example: Minimizing De Jong’s Fifth
Function” on page 4-4 from the command line with the simulated annealing
algorithm by entering

7-2

Using the Simulated Annealing and Threshold Acceptance Algorithms from the Command Line

[x, fval] = simulannealbnd(@dejong5fcn, [0 0])

This returns

x =
-31.9564 -15.9755

fval =
5.9288

Additional Output Arguments
To get more information about the performance of the algorithm, you can call
simulannealbnd or threshacceptbnd with the syntax

[x, fval, exitflag, output] = simulannealbnd(@objfun, x0)

Besides x and fval, this function returns the following additional output
arguments:

• exitflag — Flag indicating the reason the algorithm terminated

• output — Structure containing information about the performance of the
algorithm

See the simulannealbnd and threshacceptbnd reference pages for more
information about these arguments.

Setting Options for simulannealbnd and
threshacceptbnd at the Command Line
You can specify options by passing an options structure as an input argument
to either simulannealbnd and threshacceptbnd using the syntax

[x, fval] = simulannealbnd(@objfun, x0, [], [], options)

This syntax does not specify any lower or upper bound constraints.

You create the options structure using the function saoptimset:

options = saoptimset('simulannealbnd')

This returns the structure options with the default values for its fields:

7-3

7 Using the Simulated Annealing and Threshold Acceptance Algorithms

options =
AnnealingFcn: @annealingfast

TemperatureFcn: @temperatureexp
AcceptanceFcn: @acceptancesa

TolFun: 1.0000e-006
StallIterLimit: '500*numberofvariables'

MaxFunEvals: '3000*numberofvariables'
TimeLimit: Inf

MaxIter: Inf
ObjectiveLimit: -Inf

Display: 'final'
DisplayInterval: 10

HybridFcn: []
HybridInterval: 'end'

PlotFcns: []
PlotInterval: 1

OutputFcns: []
InitialTemperature: 100

ReannealInterval: 100
DataType: 'double'

These are the default values for simulannealbnd. To see the default values
for threshacceptbnd, run

options = saoptimset('threshacceptbnd')

The value of each option is stored in a field of the options structure, such as
options.ReannealInterval. You can display any of these values by entering
options followed by the name of the field. For example, to display the interval
for reannealing used for the simulated annealing algorithm, enter

options.ReannealInterval
ans =

100

To create an options structure with a field value that is different from the
default—for example, to set ReannealInterval to 300 instead of its default
value 100—enter

options = saoptimset('ReannealInterval', 300)

7-4

Using the Simulated Annealing and Threshold Acceptance Algorithms from the Command Line

This creates the options structure with all values set to their defaults, except
for ReannealInterval, which is set to 300.

If you now enter

simulannealbnd(@objfun, x0, [], [], options)

simulannealbnd runs the simulated annealing algorithm with a reannealing
interval of 300.

If you subsequently decide to change another field in the options structure,
such as setting PlotFcns to @saplotbestf, which plots the best objective
function value at each iteration, call saoptimset with the syntax

options = saoptimset(options, 'PlotFcns', @saplotbestf)

This preserves the current values of all fields of options except for PlotFcns,
which is changed to @saplotbestf. Note that if you omit the input argument
options, saoptimset resets ReannealInterval to its default value 100.

You can also set both ReannealInterval and PlotFcns with the single
command

options = saoptimset('ReannealInterval', 300, ...
'PlotFcns', @saplotbestf)

Reproducing Your Results
Because the simulated annealing and threshold acceptance algorithms
are stochastic—that is, they each makes random choices—you get slightly
different results each time you run them. The algorithms use the MATLAB
uniform and normal random number generators, rand and randn, when
generating subsequent points and also when determining whether or not
to accept new points. Each time the algorithms call rand and randn, their
states are changed so that the next time they are called, they return different
random numbers.

If you need to reproduce your results exactly, call simulannealbnd or
threshacceptbnd with an output argument that contains the current states
of rand and randn and then reset the states to these values before running the
function again. For example, to reproduce the output of simulanneal applied
to De Jong’s fifth function, call simulannealbnd with the syntax

7-5

7 Using the Simulated Annealing and Threshold Acceptance Algorithms

[x,fval,exitflag,output] = simulannealbnd(@dejong5fcn,[0 0]);

Suppose the results are

x =
-32.0401 -16.1223

fval =
5.9288

The states of rand and randn are stored in two fields of output.

output =
iterations: 2041
funccount: 2058

message: [1x80 char]
randstate: [625x1 uint32]

randnstate: [2x1 double]
problemtype: 'unconstrained'
temperature: [2x1 double]

totaltime: 1.8226

Reset the states by entering

rand('twister', output.randstate);
randn('state', output.randnstate);

If you now run simulannealbnd a second time, you get the same results.

Note If you do not need to reproduce your results, it is better not to set the
states of rand and randn, so that you get the benefit of the randomness
in these algorithms.

7-6

Simulated Annealing and Threshold Acceptance Examples

Simulated Annealing and Threshold Acceptance Examples
If you are viewing this documentation in the Help browser, click the following
link to see the demo Minimization Using Simulated Annealing And Threshold
Acceptance Algorithms. Or, from the command line in MATLAB, type
showdemo('saobjective').

7-7

7 Using the Simulated Annealing and Threshold Acceptance Algorithms

7-8

8

Options Reference

Pattern Search Options (p. 8-2) Describes the options for pattern
search.

Genetic Algorithm Options (p. 8-23) Describes the options for the genetic
algorithm.

Simulated Annealing and Threshold
Acceptance Algorithm Options
(p. 8-45)

Describes the options for the
simulated annealing and threshold
acceptance algorithms.

8 Options Reference

Pattern Search Options

In this section...

“Pattern Search Tool vs. Command Line” on page 8-2

“Plot Options” on page 8-3

“Poll Options” on page 8-5

“Search Options” on page 8-8

“Mesh Options” on page 8-12

“Algorithm Settings” on page 8-13

“Cache Options” on page 8-13

“Stopping Criteria” on page 8-14

“Output Function Options” on page 8-15

“Display to Command Window Options” on page 8-17

“Vectorize Option” on page 8-18

“Options Table for Pattern Search Algorithms” on page 8-19

Pattern Search Tool vs. Command Line
There are two ways to specify options for pattern search, depending on
whether you are using the Pattern Search Tool or calling the function
patternsearch at the command line:

• If you are using the Pattern Search Tool (psearchtool), you specify the
options by selecting an option from a drop-down list or by entering the
value of the option in the text field, as described in “Setting Options in the
Pattern Search Tool” on page 5-14.

• If you are calling patternsearch from the command line, you specify the
options by creating an options structure using the function psoptimset,
as follows:

options = psoptimset('Param1', value1, 'Param2', value2, ...);

8-2

Pattern Search Options

See “Setting Options for patternsearch at the Command Line” on page
5-21 for examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Pattern Search Tool

• By its field name in the options structure

For example:

• Poll method refers to the label of the option in the Pattern Search Tool.

• PollMethod refers to the corresponding field of the options structure.

Plot Options
Plot options enable you to plot data from the pattern search while it is
running. When you select plot functions and run the pattern search, a plot
window displays the plots on separate axes. You can stop the algorithm at any
time by clicking the Stop button on the plot window.

Plot interval (PlotInterval) specifies the number of iterations between
consecutive calls to the plot function.

You can select any of the following plots in the Plots pane.

• Best function value (@psplotbestf) plots the best objective function
value.

• Function count (@psplotfuncount) plots the number of function
evaluations.

• Mesh size (@psplotmeshsize) plots the mesh size.

• Best point (@psplotbestx) plots the current best point.

• Max constraint (@psplotmaxconstr) plots the maximum nonlinear
constraint violation.

• Custom enables you to use your own plot function. To specify the plot
function using the Pattern Search Tool,

- Select Custom function.

8-3

8 Options Reference

- Enter @myfun in the text box, where myfun is the name of your function.

“Structure of the Plot Functions” on page 8-4 describes the structure of
a plot function.

To display a plot when calling patternsearch from the command line, set the
PlotFcns field of options to be a function handle to the plot function. For
example, to display the best function value, set options as follows

options = psoptimset('PlotFcns', @psplotbestf);

To display multiple plots, use the syntax

options = psoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot
functions (listed in parentheses in the preceding list).

Structure of the Plot Functions
The first line of a plot function has the form

function stop = plotfun(optimvalues, flag)

The input arguments to the function are

• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- iteration — Iteration number

- fval — Objective function value

- meshsize — Current mesh size

- funccount — Number of function evaluations

- method — Method used in last iteration

- TolFun — Tolerance on function value in last iteration

- TolX — Tolerance on x value in last iteration

8-4

Pattern Search Options

- nonlinineq — Nonlinear inequality constraints, displayed only when a
nonlinear constraint function is specified

- nonlineq — Nonlinear equality constraints, displayed only when a
nonlinear constraint function is specified

• flag — Current state in which the plot function is called. The possible
values for flag are

- init — Initialization state

- iter — Iteration state

- interrupt — Intermediate stage

- done — Final state

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

The output argument stop provides a way to stop the algorithm at the current
iteration. stop can have the following values:

• false — The algorithm continues to the next iteration.

• true — The algorithm terminates at the current iteration.

Poll Options
Poll options control how the pattern search polls the mesh points at each
iteration.

Poll method (PollMethod) specifies the pattern the algorithm uses to create
the mesh. There are two patterns for each of the two classes of direct search
algorithms: the generalized pattern search (GPS) algorithm and the mesh
adaptive direct search (MADS) algorithm.

These patterns are the Positive basis 2N and the Positive basis N+1:

• The default pattern, GPS Positive basis 2N, consists of the following 2N
vectors, where N is the number of independent variables for the objective
function.

8-5

8 Options Reference

For example, if the optimization problem has three independent variables,
the pattern consists of the following six vectors.

• The pattern, MADS Positive basis 2N, consists of 2N randomly generated
vectors, where N is the number of independent variables for the objective
function. This is done by randomly generating N vectors which form a
linearly independent set, then using this first set and the negative of this
set gives 2N vectors. As shown above, the GPS Positive basis 2N pattern
is formed using the positive and negative of the linearly independent
identity, however, with the MADS Positive basis 2N, the pattern is
generated using a random permutation of an N-by-N linearly independent
lower triangular matrix that is regenerated at each iteration.

• The GPS Positive basis NP1 pattern consists of the following N + 1
vectors.

8-6

Pattern Search Options

For example, if the objective function has three independent variables, the
pattern consists of the following four vectors.

• The pattern, MADS Positive basis N+1, consists of N randomly generated
vectors to form the positive basis, where N is the number of independent
variables for the objective function. Then, one more random vector
is generated, giving N+1 randomly generated vectors. Each iteration
generates a new pattern when the MADS Positive basis N+1 is selected.

Complete poll (CompletePoll) specifies whether all the points in the
current mesh must be polled at each iteration. Complete Poll can have
the values On or Off.

• If you set Complete poll to On, the algorithm polls all the points in the
mesh at each iteration and chooses the point with the smallest objective
function value as the current point at the next iteration.

• If you set Complete poll to Off, the default value, the algorithm stops the
poll as soon as it finds a point whose objective function value is less than
that of the current point. The algorithm then sets that point as the current
point at the next iteration.

Polling order (PollingOrder) specifies the order in which the algorithm
searches the points in the current mesh. The options are

• Random — The polling order is random.

8-7

8 Options Reference

• Success — The first search direction at each iteration is the direction in
which the algorithm found the best point at the previous iteration. After
the first point, the algorithm polls the mesh points in the same order as
Consecutive.

• Consecutive — The algorithm polls the mesh points in consecutive order,
that is, the order of the pattern vectors as described in “Poll Method” on
page 5-25.

See “Poll Options” on page 8-5 for more information.

Search Options
Search options specify an optional search that the algorithm can perform at
each iteration prior to the polling. If the search returns a point that improves
the objective function, the algorithm uses that point at the next iteration and
omits the polling. Please note, if you have selected the same Search method
and Poll method, only the option selected in the Poll method will be used,
although both will be used when the options selected are different.

Complete search (CompleteSearch) applies when you set Search method
to GPS Positive basis Np1, GPS Positive basis 2N, MADS Positive
basis Np1, MADS Positive basis 2N, or Latin hypercube. Complete
search can have the values On or Off.

For GPS Positive basis Np1, MADS Positive basis Np1, GPS Positive
basis 2N, or MADS Positive basis 2N, Complete search has the same
meaning as the poll option Complete poll.

Search method (SearchMethod) specifies the optional search step. The
options are

• None ([]) (the default) specifies no search step.

• GPS Positive basis Np1 ('GPSPositiveBasisNp1') performs a search
step of a pattern search using the GPS Positive Basis Np1 option.

• GPS Positive basis 2N ('GPSPositiveBasis2N') performs a search step
of a pattern search using the GPS Positive Basis 2N option.

• MADS Positive basis Np1 ('MADSPositiveBasisNp1') performs a search
step of a pattern search using the MADS Positive Basis Np1option.

8-8

Pattern Search Options

• MADS Positive basis 2N ('MADSPositiveBasis2N') performs a search
step of a pattern search using the MADS Positive Basis 2N option.

• Genetic Algorithm (@searchga) specifies a search using the genetic
algorithm. If you select Genetic Algorithm, two other options appear:

- Iteration limit — Positive integer specifying the number of iterations of
the pattern search for which the genetic algorithm search is performed.
The default for Iteration limit is 1.

- Options — Options structure for the genetic algorithm, which you can
set using gaoptimset.

To change the default values of Iteration limit and Options at the
command line, use the syntax

options = psoptimset('SearchMethod',...
{@searchga,iterlim,optionsGA})

where iterlim is the value of Iteration limit and optionsGA is the
genetic algorithm options structure.

• Latin hypercube (@searchlhs) specifies a Latin hypercube search. The
way the search is performed depends on the setting for Complete search:

- If you set Complete search to On, the algorithm polls all the points that
are randomly generated at each iteration by the Latin hypercube search
and chooses the one with the smallest objective function value.

- If you set Complete search to Off (the default), the algorithm stops
the poll as soon as it finds one of the randomly generated points whose
objective function value is less than that of the current point, and
chooses that point for the next iteration.

If you select Latin hypercube, two other options appear:

- Iteration limit — Positive integer specifying the number of iterations
of the pattern search for which the Latin hypercube search is performed.
The default for Iteration limit is 1.

- Design level — A positive integer specifying the design level. The
number of points searched equals the Design level multiplied by the
number of independent variables for the objective function. The default
for Design level is 15.

8-9

8 Options Reference

To change the default values of Iteration limit and Design level at the
command line, use the syntax

options=psoptimset('SearchMethod', {@searchlhs,iterlim,level})

where iterlim is the value of Iteration limit and level is the value of
Design level.

• Nelder-Mead (@searchneldermead) specifies a search using fminsearch,
which uses the Nelder-Mead algorithm. If you select Nelder-Mead, two
other options appear:

- Iteration limit — Positive integer specifying the number of iterations
of the pattern search for which the Nelder-Mead search is performed.
The default for Iteration limit is 1.

- Options — Options structure for the function fminsearch, which you
can create using the function optimset.

To change the default values of Iteration limit and Options at the
command line, use the syntax

options=psoptimset('SearchMethod',...
{@searchga,iterlim,optionsNM})

where iterlim is the value of Iteration limit and optionsNM is the
options structure.

• Custom enables you to write your own search function. To specify the
search function using the Pattern Search Tool,

- Set Search function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using patternsearch, set

options = psoptimset('SearchMethod', @myfun);

To see a template that you can use to write your own search function, enter

edit searchfcntemplate

The following section describes the structure of the search function.

8-10

Pattern Search Options

Structure of the Search Function
Your search function must have the following calling syntax.

function [successSearch,xBest,fBest,funccount] =
searchfcntemplate(fun,x,A,b,Aeq,beq,lb,ub, ...

optimValues,options)

The search function has the following input arguments:

• fun — Objective function

• x — Current point

• A,b — Linear inequality constraints

• Aeq,beq — Linear equality constraints

• lb,ub — Lower and upper bound constraints

• optimValues — Structure that enables you to set search options. The
structure contains the following fields:

- x — Current point

- fval — Objective function value at x

- iteration — Current iteration number

- funccount — Counter for user function evaluation

- scale — Scale factor used to scale the design points

- problemtype — Flag passed to the search routines, indicating
whether the problem is 'unconstrained', 'boundconstraints', or
'linearconstraints'. This field is a sub-problem type for nonlinear
constrained problems.

- meshsize — Current mesh size used in search step

- method — Method used in last iteration

• options — Pattern search options structure

The function has the following output arguments:

• successSearch — A Boolean identifier indicating whether the search is
successful or not

8-11

8 Options Reference

• xBest,fBest — Best point and best function value found by search method

Note If you set Search method to Genetic algorithm or Nelder-Mead,
we recommend that you leave Iteration limit set to the default value 1,
because performing these searches more than once is not likely to improve
results.

• funccount — Number of user function evaluation in search method

See “Using a Search Method” on page 5-32 for an example.

Mesh Options
Mesh options control the mesh that the pattern search uses. The following
options are available.

Initial size (InitialMeshSize) specifies the size of the initial mesh, which is
the length of the shortest vector from the initial point to a mesh point. Initial
size should be a positive scalar. The default is 1.0.

Max size (MaxMeshSize) specifies a maximum size for the mesh. When the
maximum size is reached, the mesh size does not increase after a successful
iteration. Max size must be a positive scalar, and is only used when the GPS
algorithm is selected as the Poll or Search method. The default value is Inf.

Accelerator (MeshAccelerator) specifies whether the Contraction factor
is multiplied by 0.5 after each unsuccessful iteration. Accelerator can have
the values On or Off, the default.

Rotate (MeshRotate) specifies whether the mesh vectors are multiplied by -1
when the mesh size is less than a small value. Rotate is only applied when
Poll method is set to GPS Positive basis Np1 .

Note Changing the setting of Rotate has no effect on the poll when Poll
method is set to GPS Positive basis 2N, MADS Positive basis 2N, or
MADS Positive basis Np1.

8-12

Pattern Search Options

Scale (ScaleMesh) specifies whether the algorithm scales the mesh points
by multiplying the pattern vectors by constants. Scale can have the values
Off or On (the default).

Expansion factor (MeshExpansion) specifies the factor by which the mesh
size is increased after a successful poll. The default value is 2.0, which
means that the size of the mesh is multiplied by 2.0 after a successful poll.
Expansion factor must be a positive scalar and is only used when a GPS
method is selected as the Poll or Search method.

Contraction factor (MeshContraction) specifies the factor by which the
mesh size is decreased after an unsuccessful poll. The default value is
0.5, which means that the size of the mesh is multiplied by 0.5 after an
unsuccessful poll. Contraction factor must be a positive scalar and is only
used when a GPS method is selected as the Poll or Search method.

See “Mesh Expansion and Contraction” on page 5-35 for more information.

Algorithm Settings
Algorithm settings define algorithmic specific parameters.

Parameters that can be specified for a nonlinear constraint algorithm include

• Initial penalty (InitialPenalty) — Specifies an initial value of the
penalty parameter that is used by the algorithm. Initial penalty must be
greater than or equal to 1.

• Penalty factor (PenaltyFactor) — Increases the penalty parameter when
the problem is not solved to required accuracy and constraints are not
satisfied. Penalty factor must be greater than 1.

Cache Options
The pattern search algorithm can keep a record of the points it has already
polled, so that it does not have to poll the same point more than once. If the
objective function requires a relatively long time to compute, the cache option
can speed up the algorithm. The memory allocated for recording the points is
called the cache. This option should only be used for deterministic objective
functions, but not for stochastic ones.

8-13

8 Options Reference

Cache (Cache) specifies whether a cache is used. The options are On and Off,
the default. When you set Cache to On, the algorithm does not evaluate the
objective function at any mesh points that are within Tolerance of a point
in the cache.

Tolerance (CacheTol) specifies how close a mesh point must be to a point in
the cache for the algorithm to omit polling it. Tolerance must be a positive
scalar. The default value is eps.

Size (CacheSize) specifies the size of the cache. Size must be a positive
scalar. The default value is 1e4.

See “Using Cache” on page 5-41 for more information.

Stopping Criteria
Stopping criteria determine what causes the pattern search algorithm to stop.
Pattern search uses the following criteria:

Mesh tolerance (TolMesh) specifies the minimum tolerance for mesh size.
The algorithm stops if the mesh size becomes smaller than Mesh tolerance.
The default value is 1e-6.

Max iteration (MaxIter) specifies the maximum number of iterations the
algorithm performs. The algorithm stops if the number of iterations reaches
Max iteration. You can select either

• 100*numberofvariables — Maximum number of iterations is 100 times
the number of independent variables (the default).

• Specify — A positive integer for the maximum number of iterations

Max function evaluations (MaxFunEval) specifies the maximum number
of evaluations of the objective function. The algorithm stops if the number
of function evaluations reaches Max function evaluations. You can select
either

• 2000*numberofvariables — Maximum number of function evaluations is
2000 times the number of independent variables.

8-14

Pattern Search Options

• Specify — A positive integer for the maximum number of function
evaluations

Time limit (TimeLimit) specifies the maximum time in seconds the pattern
search algorithm runs before stopping. This also includes any specified pause
time for pattern search algorithms.

Bind tolerance (TolBind) specifies the minimum tolerance for the distance
from the current point to the boundary of the feasible region. Bind tolerance
specifies when a linear constraint is active. It is not a stopping criterion. The
default value is 1e-3.

X tolerance (TolX) specifies the minimum distance between the current
points at two consecutive iterations. The algorithm stops if the distance
between two consecutive points is less than X tolerance. The default value
is 1e-6.

Function tolerance (TolFun) specifies the minimum tolerance for the
objective function. After a successful poll, if the difference between the
function value at the previous best point and function value at the current
best point is less than the value of Function tolerance, the algorithm halts.
The default value is 1e-6.

See “Setting Tolerances for the Solver” on page 5-43 for an example.

Nonlinear constraint tolerance (TolCon) — The Nonlinear constraint
tolerance is not used as stopping criterion. It is used to determine the
feasibility with respect to nonlinear constraints.

Output Function Options
Output functions are functions that the pattern search algorithm calls at each
iteration. The following options are available:

• History to new window (@psoutputhistory) displays the history of
points computed by the algorithm in the MATLAB Command Window at
each multiple of Interval iterations.

• Custom enables you to write your own output function. To specify the
output function using the Pattern Search Tool,

8-15

8 Options Reference

- Select Custom function.

- Enter @myfun in the text box, where myfun is the name of your function.

If you are using patternsearch, set

options = psoptimset('OutputFcn', @myfun);

To see a template that you can use to write your own output function, enter

edit psoutputfcntemplate

at the MATLAB command prompt.

The following section describes the structure of the output function.

Structure of the Output Function
Your output function must have the following calling syntax:

[stop, options,optchanged] =
psoutputhistory(optimvalues,options,flag,interval)

The function has the following input arguments:

• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- iteration — Iteration number

- fval — Objective function value

- meshsize — Current mesh size

- funccount — Number of function evaluations

- method — Method used in last iteration

- TolFun — Tolerance on function value in last iteration

- TolX — Tolerance on x value in last iteration

- nonlinineq — Nonlinear inequality constraints, displayed only when a
nonlinear constraint function is specified

8-16

Pattern Search Options

- nonlineq — Nonlinear equality constraints, displayed only when a
nonlinear constraint function is specified

• options — Options structure

• flag — Current state in which the output function is called. The possible
values for flag are

- init — Initialization state

- iter — Iteration state

- interrupt — Intermediate stage

- done — Final state

• interval — Optional interval argument

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the output function.

The output function returns the following arguments to ga:

• stop — Provides a way to stop the algorithm at the current iteration. stop
can have the following values.

- false — The algorithm continues to the next iteration.

- true — The algorithm terminates at the current iteration.

• options — Options structure.

• optchanged — Flag indicating changes to options.

Display to Command Window Options
Level of display ('Display') specifies how much information is displayed
at the command line while the pattern search is running. The available
options are

• Off ('off') — No output is displayed.

• Iterative (’iter') — Information is displayed for each iteration.

• Diagnose ('diagnose') — Information is displayed for each iteration. In
addition, the diagnostic lists some problem information and the options
that are changed from the defaults.

8-17

8 Options Reference

• Final ('final') — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

• Iter — Iteration number

• FunEval — Cumulative number of function evaluations

• MeshSize — Current mesh size

• FunVal — Objective function value of the current point

• Method — Outcome of the current poll (with no nonlinear constraint
function specified). With a nonlinear constraint function, Method displays
the update method used after a subproblem is solved.

• Max Constraint — Maximum nonlinear constraint violation (displayed
only when a nonlinear constraint function has been specified)

The default value of Level of display is

• Off in the Pattern Search Tool

• 'final' in an options structure created using psoptimset

Vectorize Option
Objective function is vectorized specifies whether the computation of the
objective function is vectorized. When Objective function is vectorized is
Off, the algorithm calls the objective function on one point at a time as it loops
through all of the mesh points. When Objective function is vectorized is
On, the pattern search algorithm calls the objective function on all the points
in the mesh at once, i.e., in a single call to the objective function if either
Complete Poll or Complete Search is On.

8-18

Pattern Search Options

Options Table for Pattern Search Algorithms

Option Availability Table for GPS and MADS Algorithms

Option Description Algorithm Availability

Cache With Cache set to 'on',
patternsearch keeps
a history of the mesh
points it polls and does
not poll points close to
them again at subsequent
iterations. Use this option
if patternsearch runs
slowly because it is taking
a long time to compute
the objective function. If
the objective function is
stochastic, it is advised not
to use this option.

GPS
MADS

CacheSize Size of the cache. GPSMADS

CacheTol Positive scalar specifying
how close the current
mesh point must be to a
point in the cache in order
for patternsearch to
avoid polling it. Available
if 'Cache' option is set to
'on'.

GPSMADS

CompletePoll Complete poll around
current iterate. Evaluate
all the points in a poll step.

GPSMADS

CompleteSearch Complete poll around
current iterate. Evaluate
all the points in a search
step.

GPSMADS

Display Level of display to
Command Window.

GPSMADS

8-19

8 Options Reference

Option Availability Table for GPS and MADS Algorithms (Continued)

Option Description Algorithm Availability

InitialMeshSize Initial mesh size used in
pattern search algorithms.

GPSMADS

InitialPenalty Initial value of the penalty
parameter.

GPSMADS

MaxFunEvals Maximum number
of objective function
evaluations.

GPSMADS

MaxIter Maximum number of
iterations.

GPSMADS

MaxMeshSize Maximum mesh size used
in a poll/search step.

GPSMADS

MeshAccelerator Accelerate mesh size
contraction.

GPSMADS

MeshContraction Mesh contraction factor,
used when iteration is
unsuccessful.

GPS — Default value is
0.5.MADS — Default value
is 0.25 if MADS algorithm
is selected for either the
Poll method or Search
method.

MeshExpansion Mesh expansion factor,
expands mesh when
iteration is successful.

GPS — Default value is
2.MADS — Default value
is 4 if MADS algorithm
is selected for either the
Poll method or Search
method

.

MeshRotate Rotate the pattern before
declaring a point to be
optimum.

GPSMADS

8-20

Pattern Search Options

Option Availability Table for GPS and MADS Algorithms (Continued)

Option Description Algorithm Availability

OutputFcn User-specified function
that a pattern search calls
at each iteration.

GPSMADS

PenaltyFactor Penalty update parameter. GPSMADS

PlotFcn Specifies function to plot
at runtime.

GPSMADS

PlotInterval Specifies that plot
functions will be called at
every interval.

GPSMADS

PollingOrder Order in which search
directions are polled.

GPS only

PollMethod Polling strategy used in
pattern search.

GPSMADS

ScaleMesh Automatic scaling of
variables.

GPSMADS

SearchMethod Specifies search method
used in pattern search.

GPSMADS

TimeLimit Total time (in seconds)
allowed for optimization.
Also includes any specified
pause time for pattern
search algorithms.

GPSMADS

TolBind Binding tolerance used
to determine if linear
constraint is active.

GPSMADS

TolCon Tolerance on nonlinear
constraints.

GPSMADS

TolFun Tolerance on function
value.

GPSMADS

TolMesh Tolerance on mesh size. GPSMADS

8-21

8 Options Reference

Option Availability Table for GPS and MADS Algorithms (Continued)

Option Description Algorithm Availability

TolX Tolerance on independent
variable.

GPSMADS

Vectorized Specifies whether
functions are vectorized.

GPSMADS

8-22

Genetic Algorithm Options

Genetic Algorithm Options

In this section...

“Genetic Algorithm Tool vs. Command Line” on page 8-23

“Plot Options” on page 8-24

“Population Options” on page 8-27

“Fitness Scaling Options” on page 8-29

“Selection Options” on page 8-31

“Reproduction Options” on page 8-32

“Mutation Options” on page 8-33

“Crossover Options” on page 8-35

“Migration Options” on page 8-39

“Algorithm Settings” on page 8-39

“Multiobjective Options” on page 8-40

“Hybrid Function Options” on page 8-40

“Stopping Criteria Options” on page 8-41

“Output Function Options” on page 8-41

“Display to Command Window Options” on page 8-43

“Vectorize Option” on page 8-44

Genetic Algorithm Tool vs. Command Line
There are two ways to specify options for the genetic algorithm, depending
on whether you are using the Genetic Algorithm Tool or calling the functions
ga or at the command line:

• If you are using the Genetic Algorithm Tool (gatool), select an option from
a drop-down list or enter the value of the option in a text field. See “Setting
Options in the Genetic Algorithm Tool” on page 6-13.

• If you are calling ga or gamultiobj from the command line, create an
options structure using the function gaoptimset, as follows:

8-23

8 Options Reference

options = gaoptimset('Param1', value1, 'Param2', value2, ...);

See “Setting Options for ga at the Command Line” on page 6-24 for
examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Genetic Algorithm Tool

• By its field name in the options structure

For example:

• Population type is the label of the option in the Genetic Algorithm Tool.

• PopulationType is the corresponding field of the options structure.

Plot Options
Plot options enable you to plot data from the genetic algorithm while it is
running. When you select plot functions and run the genetic algorithm, a plot
window displays the plots on separate axes. Click on any subplot to view
a larger version of the plot in a separate figure window. You can stop the
algorithm at any time by clicking the Stop button on the plot window.

Plot interval (PlotInterval) specifies the number of generations between
consecutive calls to the plot function.

You can select any of the following plot functions in the Plots pane:

• Best fitness (@gaplotbestf) plots the best function value versus
generation.

• Expectation (@gaplotexpectation) plots the expected number of children
versus the raw scores at each generation.

• Score diversity (@gaplotscorediversity) plots a histogram of the scores
at each generation.

• Stopping (@plotstopping) plots stopping criteria levels.

• Best individual (@gaplotbestindiv) plots the vector entries of the
individual with the best fitness function value in each generation.

8-24

Genetic Algorithm Options

• Genealogy (@gaplotgenealogy) plots the genealogy of individuals. Lines
from one generation to the next are color-coded as follows:

- Red lines indicate mutation children.

- Blue lines indicate crossover children.

- Black lines indicate elite individuals.

• Scores (@gaplotscores) plots the scores of the individuals at each
generation.

• Max constraint (@gaplotmaxconstr) plots the maximum nonlinear
constraint violation at each generation.

• Distance (@gaplotdistance) plots the average distance between
individuals at each generation.

• Range (@gaplotrange) plots the minimum, maximum, and mean fitness
function values in each generation.

• Selection (@gaplotselection) plots a histogram of the parents.

• Custom function enables you to use plot functions of your own. To specify
the plot function if you are using the Genetic Algorithm Tool,

- Select Custom function.

- Enter @myfun in the text box, where myfun is the name of your function.

See “Structure of the Plot Functions” on page 8-26.

To display a plot when calling ga from the command line, set the PlotFcns
field of options to be a function handle to the plot function. For example, to
display the best fitness plot, set options as follows

options = gaoptimset('PlotFcns', @gaplotbestf);

To display multiple plots, use the syntax

options =gaoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot
functions.

8-25

8 Options Reference

Structure of the Plot Functions
The first line of a plot function has the form

function state = plotfun(options, state, flag)

The input arguments to the function are

• options — Structure containing all the current options settings.

• state — Structure containing information about the current generation.
“The State Structure” on page 8-26 describes the fields of state.

• flag — String that tells what stage the algorithm is currently in.

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

The State Structure
The state structure, which is an input argument to plot, mutation, and output
functions, contains the following fields:

• Population — Population in the current generation

• Score — Scores of the current population

• Generation — Current generation number

• StartTime — Time when genetic algorithm started

• StopFlag — String containing the reason for stopping

• Selection — Indices of individuals selected for elite, crossover and
mutation

• Expectation — Expectation for selection of individuals

• Best — Vector containing the best score in each generation

• LastImprovement — Generation at which the last improvement in fitness
value occurred

• LastImprovementTime — Time at which last improvement occurred

• NonlinIneq — Nonlinear inequality constraints, displayed only when a
nonlinear constraint function is specified

8-26

Genetic Algorithm Options

• NonlinEq — Nonlinear equality constraints, displayed only when a
nonlinear constraint function is specified

Population Options
Population options enable you to specify the parameters of the population that
the genetic algorithm uses.

Population type (PopulationType) specifies the data type of the input to
the fitness function. You can set Population type to be one of the following:

• Double Vector ('doubleVector') — Use this option if the individuals in
the population have type double. This is the default.

• Bit string ('bitstring') — Use this option if the individuals in the
population are bit strings.

• Custom ('custom') — Use this option to create a population whose data
type is neither of the preceding.

If you use a custom population type, you must write your own creation,
mutation, and crossover functions that accept inputs of that population
type, and specify these functions in the following fields, respectively:

- Creation function (CreationFcn)

- Mutation function (MutationFcn)

- Crossover function (CrossoverFcn)

Population size (PopulationSize) specifies how many individuals there
are in each generation. With a large population size, the genetic algorithm
searches the solution space more thoroughly, thereby reducing the chance
that the algorithm will return a local minimum that is not a global minimum.
However, a large population size also causes the algorithm to run more slowly.

If you set Population size to a vector, the genetic algorithm creates multiple
subpopulations, the number of which is the length of the vector. The size of
each subpopulation is the corresponding entry of the vector.

Creation function (CreationFcn) specifies the function that creates the
initial population for ga. You can choose from the following functions:

8-27

8 Options Reference

• Uniform (@gacreationuniform) creates a random initial population with a
uniform distribution. This is the default.

• Custom enables you to write your own creation function, which must
generate data of the type that you specify in Population type. To specify
the creation function if you are using the Genetic Algorithm Tool,

- Set Creation function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga, set

options = gaoptimset('CreationFcn', @myfun);

Your creation function must have the following calling syntax.

function Population = myfun(GenomeLength, FitnessFcn, options)

The input arguments to the function are

- Genomelength — Number of independent variables for the fitness
function

- FitnessFcn — Fitness function

- options — Options structure

The function returns Population, the initial population for the genetic
algorithm.

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

Initial population (InitialPopulation) specifies an initial population for
the genetic algorithm. The default value is [], in which case ga uses the
Creation function to create an initial population. If you enter a nonempty
array in the Initial population field, the array must have Population size
rows and Number of variables columns. In this case, the genetic algorithm
does not call the Creation function. The initial population can be partial.

Initial scores (InitialScores) specifies initial scores for the initial
population. The initial scores can also be partial.

8-28

Genetic Algorithm Options

Initial range (PopInitRange) specifies the range of the vectors in the initial
population that is generated by the creation function. You can set Initial
range to be a matrix with two rows and Number of variables columns,
each column of which has the form [lb; ub], where lb is the lower bound
and ub is the upper bound for the entries in that coordinate. If you specify
Initial range to be a 2-by-1 vector, each entry is expanded to a constant
row of length Number of variables.

See “Example — Setting the Initial Range” on page 6-33 for an example.

Fitness Scaling Options
Fitness scaling converts the raw fitness scores that are returned by the fitness
function to values in a range that is suitable for the selection function. You
can specify options for fitness scaling in the Fitness scaling pane.

Scaling function (FitnessScalingFcn) specifies the function that performs
the scaling. The options are

• Rank (@fitscalingrank) — The default fitness scaling function, Rank,
scales the raw scores based on the rank of each individual instead of its
score. The rank of an individual is its position in the sorted scores. The
rank of the most fit individual is 1, the next most fit is 2, and so on. Rank
fitness scaling removes the effect of the spread of the raw scores.

• Proportional (@fitscalingprop) — Proportional scaling makes the scaled
value of an individual proportional to its raw fitness score.

• Top (@fitscalingtop) — Top scaling scales the top individuals equally.
Selecting Top displays an additional field, Quantity, which specifies the
number of individuals that are assigned positive scaled values. Quantity
can be an integer between 1 and the population size or a fraction between 0
and 1 specifying a fraction of the population size. The default value is 0.4.
Each of the individuals that produce offspring is assigned an equal scaled
value, while the rest are assigned the value 0. The scaled values have the
form [0 1/n 1/n 0 0 1/n 0 0 1/n ...].

To change the default value for Quantity at the command line, use the
following syntax

options = gaoptimset('FitnessScalingFcn', {@fitscalingtop,
quantity})

8-29

8 Options Reference

where quantity is the value of Quantity.

• Shift linear (@fitscalingshiftlinear) — Shift linear scaling scales
the raw scores so that the expectation of the fittest individual is equal to
a constant multiplied by the average score. You specify the constant in
the Max survival rate field, which is displayed when you select Shift
linear. The default value is 2.

To change the default value of Max survival rate at the command line,
use the following syntax

options = gaoptimset('FitnessScalingFcn',
{@fitscalingshiftlinear, rate})

where rate is the value of Max survival rate.

• Custom enables you to write your own scaling function. To specify the
scaling function using the Genetic Algorithm Tool,

- Set Scaling function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga at the command line, set

options = gaoptimset('FitnessScalingFcn', @myfun);

Your scaling function must have the following calling syntax:

function expection = myfun(scores, nParents)

The input arguments to the function are

- scores — A vector of scalars, one for each member of the population

- nParents — The number of parents needed from this population

The function returns expectation, a row vector of scalars of the same
length as scores, giving the scaled values of each member of the
population. The sum of the entries of expectation must equal nParents.

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

8-30

Genetic Algorithm Options

See “Fitness Scaling” on page 6-37 for more information.

Selection Options
Selection options specify how the genetic algorithm chooses parents for the
next generation. You can specify the function the algorithm uses in the
Selection function (SelectionFcn) field in the Selection options pane.
The options are

• Stochastic uniform (@selectionstochunif) — The default selection
function, Stochastic uniform, lays out a line in which each parent
corresponds to a section of the line of length proportional to its scaled value.
The algorithm moves along the line in steps of equal size. At each step, the
algorithm allocates a parent from the section it lands on. The first step is a
uniform random number less than the step size.

• Remainder (@selectionremainder) — Remainder selection assigns
parents deterministically from the integer part of each individual’s scaled
value and then uses roulette selection on the remaining fractional part. For
example, if the scaled value of an individual is 2.3, that individual is listed
twice as a parent because the integer part is 2. After parents have been
assigned according to the integer parts of the scaled values, the rest of the
parents are chosen stochastically. The probability that a parent is chosen
in this step is proportional to the fractional part of its scaled value.

• Uniform (@selectionuniform) — Uniform selection chooses parents using
the expectations and number of parents. Uniform selection is useful for
debugging and testing, but is not a very effective search strategy.

• Roulette (@selectionroulette) — Roulette selection chooses parents
by simulating a roulette wheel, in which the area of the section of the
wheel corresponding to an individual is proportional to the individual’s
expectation. The algorithm uses a random number to select one of the
sections with a probability equal to its area.

• Tournament (@selectiontournament) — Tournament selection chooses
each parent by choosing Tournament size players at random and then
choosing the best individual out of that set to be a parent. Tournament
size must be at least 2. The default value of Tournament size is 4.

To change the default value of Tournament size at the command line,
use the syntax

8-31

8 Options Reference

options = gaoptimset('SelectionFcn',...
{@selecttournament,size})

where size is the value of Tournament size.

• Custom enables you to write your own selection function. To specify the
selection function using the Genetic Algorithm Tool,

- Set Selection function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga at the command line, set

options = gaoptimset('SelectionFcn', @myfun);

Your selection function must have the following calling syntax:

function parents = myfun(expectation, nParents, options)

The input arguments to the function are

- expectation — Expected number of children for each member of the
population

- nParents — Number of parents to select

- options — Genetic algorithm options structure

The function returns parents, a row vector of length nParents containing
the indices of the parents that you select.

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

See “Selection” on page 6-40 for more information.

Reproduction Options
Reproduction options specify how the genetic algorithm creates children for
the next generation.

8-32

Genetic Algorithm Options

Elite count (EliteCount) specifies the number of individuals that are
guaranteed to survive to the next generation. Set Elite count to be a positive
integer less than or equal to the population size. The default value is 2.

Crossover fraction (CrossoverFraction) specifies the fraction of the next
generation, other than elite children, that are produced by crossover. Set
Crossover fraction to be a fraction between 0 and 1, either by entering the
fraction in the text box or moving the slider. The default value is 0.8.

See “Setting the Crossover Fraction” on page 6-44 for an example.

Mutation Options
Mutation options specify how the genetic algorithm makes small random
changes in the individuals in the population to create mutation children.
Mutation provides genetic diversity and enable the genetic algorithm
to search a broader space. You can specify the mutation function in the
Mutation function (MutationFcn) field in the Mutation options pane. You
can choose from the following functions:

• Gaussian (mutationgaussian) — The default mutation function, Gaussian,
adds a random number taken from a Gaussian distribution with mean
0 to each entry of the parent vector. The variance of this distribution is
determined by the parameters Scale and Shrink, which are displayed
when you select Gaussian, and by the Initial range setting in the
Population options.

- The Scale parameter determines the variance at the first generation.
If you set Initial range to be a 2-by-1 vector v, the initial variance
is the same at all coordinates of the parent vector, and is given by
Scale*(v(2) - v(1)).

If you set Initial range to be a vector v with two rows and Number of
variables columns, the initial variance at coordinate i of the parent
vector is given by Scale*(v(i,2) - v(i,1)).

- The Shrink parameter controls how the variance shrinks as generations
go by. If you set Initial range to be a 2-by-1 vector, the variance at the
kth generation, vark, is the same at all coordinates of the parent vector,
and is given by the recursive formula

8-33

8 Options Reference

If you set Initial range to be a vector with two rows and Number of
variables columns, the variance at coordinate i of the parent vector at
the kth generation, vari,k, is given by the recursive formula

If you set Shrink to 1, the algorithm shrinks the variance in each
coordinate linearly until it reaches 0 at the last generation is reached. A
negative value of Shrink causes the variance to grow.

The default values of Scale and Shrink are 0.5 and 0.75, respectively. To
change these default values at the command line, use the syntax

options = gaoptimset('MutationFcn', ...
{@mutationgaussian, scale, shrink})

where scale and shrink are the values of Scale and Shrink, respectively.

• Uniform (mutationuniform) — Uniform mutation is a two-step process.
First, the algorithm selects a fraction of the vector entries of an individual
for mutation, where each entry has a probability Rate of being mutated.
The default value of Rate is 0.01. In the second step, the algorithm
replaces each selected entry by a random number selected uniformly from
the range for that entry.

To change the default value of Rate at the command line, use the syntax

options = gaoptimset('MutationFcn', {@mutationuniform, rate})

where rate is the value of Rate.

• Adaptive Feasible (mutationadaptfeasible) randomly generates
directions that are adaptive with respect to the last successful or
unsuccessful generation. The feasible region is bounded by the constraints
and inequality constraints. A step length is chosen along each direction so
that linear constraints and bounds are satisfied.

• Custom enables you to write your own mutation function. To specify the
mutation function using the Genetic Algorithm Tool,

8-34

Genetic Algorithm Options

- Set Mutation function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga, set

options = gaoptimset('MutationFcn', @myfun);

Your mutation function must have this calling syntax:

function mutationChildren = myfun(parents, options, nvars,
FitnessFcn, state, thisScore, thisPopulation)

The arguments to the function are

- parents — Row vector of parents chosen by the selection function

- options — Options structure

- nvars — Number of variables

- FitnessFcn — Fitness function

- state — Structure containing information about the current generation.
“The State Structure” on page 8-26 describes the fields of state.

- thisScore — Vector of scores of the current population

- thisPopulation — Matrix of individuals in the current population

The function returns mutationChildren—the mutated offspring—as a
matrix whose rows correspond to the children. The number of columns of
the matrix is Number of variables.

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

Crossover Options
Crossover options specify how the genetic algorithm combines two individuals,
or parents, to form a crossover child for the next generation.

Crossover function (CrossoverFcn) specifies the function that performs the
crossover. You can choose from the following functions:

8-35

8 Options Reference

• Scattered (@crossoverscattered), the default crossover function, creates
a random binary vector and selects the genes where the vector is a 1 from
the first parent, and the genes where the vector is a 0 from the second
parent, and combines the genes to form the child. For example, if p1 and p2
are the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following
child:

child1 = [a b 3 4 e 6 7 8]

• Single point (@crossoversinglepoint) chooses a random integer n
between 1 and Number of variables and then

- Selects vector entries numbered less than or equal to n from the first
parent.

- Selects vector entries numbered greater than n from the second parent.

- Concatenates these entries to form a child vector.

For example, if p1 and p2 are the parents

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover point is 3, the function returns the following child.

child = [a b c 4 5 6 7 8]

• Two point (@crossovertwopoint) selects two random integers m and n
between 1 and Number of variables. The function selects

- Vector entries numbered less than or equal to m from the first parent

- Vector entries numbered from m+1 to n, inclusive, from the second parent

- Vector entries numbered greater than n from the first parent.

The algorithm then concatenates these genes to form a single gene. For
example, if p1 and p2 are the parents

8-36

Genetic Algorithm Options

p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover points are 3 and 6, the function returns the following
child.

child = [a b c 4 5 6 g h]

• Intermediate (@crossoverintermediate) creates children by taking a
weighted average of the parents. You can specify the weights by a single
parameter, Ratio, which can be a scalar or a row vector of length Number
of variables. The default is a vector of all 1’s. The function creates the
child from parent1 and parent2 using the following formula.

child = parent1 + rand * Ratio * (parent2 - parent1)

If all the entries of Ratio lie in the range [0, 1], the children produced are
within the hypercube defined by placing the parents at opposite vertices. If
Ratio is not in that range, the children might lie outside the hypercube. If
Ratio is a scalar, then all the children lie on the line between the parents.

To change the default value of Ratio at the command line, use the syntax

options = gaoptimset('CrossoverFcn', ...
{@crossoverintermediate, ratio});

where ratio is the value of Ratio.

• Heuristic (@crossoverheuristic) returns a child that lies on the line
containing the two parents, a small distance away from the parent with the
better fitness value in the direction away from the parent with the worse
fitness value. You can specify how far the child is from the better parent
by the parameter Ratio, which appears when you select Heuristic. The
default value of Ratio is 1.2. If parent1 and parent2 are the parents, and
parent1 has the better fitness value, the function returns the child

child = parent2 + R * (parent1 - parent2);

To change the default value of Ratio at the command line, use the syntax

options=gaoptimset('CrossoverFcn',...
{@crossoverheuristic,ratio});

8-37

8 Options Reference

where ratio is the value of Ratio.

• Arithmetic (@crossoverarithmetic) creates children that are the
weighted arithmetic mean of two parents. Children are always feasible
with respect to linear constraints and bounds.

• Custom enables you to write your own crossover function. To specify the
crossover function using the Genetic Algorithm Tool,

- Set Crossover function to Custom.

- Set Function name to @myfun, where myfun is the name of your
function.

If you are using ga, set

options = gaoptimset('CrossoverFcn', @myfun);

Your selection function must have the following calling syntax.

xoverKids = myfun(parents, options, nvars, FitnessFcn,
unused,thisPopulation)

The arguments to the function are

- parents — Row vector of parents chosen by the selection function

- options — options structure

- nvars — Number of variables

- FitnessFcn — Fitness function

- unused — Placeholder not used

- thisPopulation — Matrix representing the current population. The
number of rows of the matrix is Population size and the number of
columns is Number of variables.

The function returns xoverKids—the crossover offspring—as a matrix
whose rows correspond to the children. The number of columns of the
matrix is Number of variables.

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

8-38

Genetic Algorithm Options

Migration Options
Migration options specify how individuals move between subpopulations.
Migration occurs if you set Population size to be a vector of length greater
than 1. When migration occurs, the best individuals from one subpopulation
replace the worst individuals in another subpopulation. Individuals that
migrate from one subpopulation to another are copied. They are not removed
from the source subpopulation.

You can control how migration occurs by the following three fields in the
Migration options pane:

• Direction (MigrationDirection) — Migration can take place in one or
both directions.

- If you set Direction to Forward ('forward'), migration takes place
toward the last subpopulation. That is, the nth subpopulation migrates
into the (n+1)th subpopulation.

- If you set Direction to Both ('both'), the nth subpopulation migrates
into both the (n-1)th and the (n+1)th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last
subpopulation migrates into the first, and the first may migrate into the
last.

• Interval (MigrationInterval) — Specifies how many generation pass
between migrations. For example, if you set Interval to 20, migration
takes place every 20 generations.

• Fraction (MigrationFraction) — Specifies how many individuals move
between subpopulations. Fraction specifies the fraction of the smaller of
the two subpopulations that moves. For example, if individuals migrate
from a subpopulation of 50 individuals into a subpopulation of 100
individuals and you set Fraction to 0.1, the number of individuals that
migrate is 0.1 * 50 = 5.

Algorithm Settings
Algorithm settings define algorithmic specific parameters.

Parameters that can be specified for a nonlinear constraint algorithm include

8-39

8 Options Reference

• Initial penalty (InitialPenalty) — Specifies an initial value of the
penalty parameter that is used by the algorithm. Initial penalty must be
greater than or equal to 1.

• Penalty factor (PenaltyFactor) — Increases the penalty parameter when
the problem is not solved to required accuracy and constraints are not
satisfied. Penalty factor must be greater than 1.

Multiobjective Options
Multiobjective options define parameters characteristic of the multiobjective
genetic algorithm. You can specify the following parameters:

• DistanceMeasureFcn — Defines a handle to the function that computes
distance measure of individuals, computed in decision variable or design
space (genotype) or in function space (phenotype). For example, the default
distance measure function is distancecrowding in function space, or
{@distancecrowding,'phenotype'}.

• ParetoFraction — Sets the fraction of individuals to keep on the first
Pareto front while the solver selects individuals from higher fronts. This
option is a scalar between 0 and 1.

Hybrid Function Options
A hybrid function is another minimization function that runs after the genetic
algorithm terminates. You can specify a hybrid function in Hybrid function
(HybridFcn) options. The choices are

• [] — No hybrid function

• fminsearch (@fminsearch) — Uses the MATLAB function fminsearch to
perform unconstrained minimization

• patternsearch (@patternsearch) — Uses a pattern search to perform
constrained or unconstrained minimization

• fminunc (@fminunc) — Uses the Optimization Toolbox function fminunc to
perform unconstrained minimization

• fmincon (@fmincon) — Uses the Optimization Toolbox function fmincon to
perform constrained minimization

See “Using a Hybrid Function” on page 6-54 for an example.

8-40

Genetic Algorithm Options

Stopping Criteria Options
Stopping criteria determine what causes the algorithm to terminate. You can
specify the following options:

• Generations (Generations) — Specifies the maximum number of
iterations the genetic algorithm will perform. The default is 100.

• Time limit (TimeLimit) — Specifies the maximum time in seconds the
genetic algorithm runs before stopping.

• Fitness limit (FitnessLimit) — The algorithm stops if the best fitness
value is less than or equal to the value of Fitness limit.

• Stall generations (StallGenLimit) — The algorithm stops if the weighted
average change in the fitness function value over Stall generations is less
than Function tolerance.

• Stall time limit (StallTimeLimit) — The algorithm stops if there is no
improvement in the best fitness value for an interval of time in seconds
specified by Stall time.

• Function tolerance (TolFun) — The algorithm runs until the cumulative
change in the fitness function value over Stall generations is less than
Function Tolerance.

• Nonlinear constraint tolerance (TolCon) — The Nonlinear constraint
tolerance is not used as stopping criterion. It is used to determine the
feasibility with respect to nonlinear constraints.

See “Setting the Maximum Number of Generations” on page 6-57 for an
example.

Output Function Options
Output functions are functions that the genetic algorithm calls at each
generation. The following options are available:

History to new window (@gaoutputgen) displays the history of points
computed by the algorithm in a new window at each multiple of Interval
iterations.

Custom enables you to write your own output function. To specify the output
function using the Genetic Algorithm Tool,

8-41

8 Options Reference

• Select Custom function.

• Enter @myfun in the text box, where myfun is the name of your function.

If you are using ga, set

options = gaoptimset('OutputFcn', @myfun);

To see a template that you can use to write your own output functions, enter

edit gaoutputfcntemplate

at the MATLAB command line.

For information on output function options available with pattern search, see
“Output Function Options” on page 8-15 in Pattern Search Options.

Structure of the Output Function
The output function has the following calling syntax.

[state, options,optchanged] = myfun(options,state,flag,interval)

The function has the following input arguments:

• options — Options structure

• state — Structure containing information about the current generation.
“The State Structure” on page 8-26 describes the fields of state.

• flag — String indicating the current status of the algorithm as follows:

- 'init' — Initial stage

- 'iter' — Algorithm running

- 'interrupt' — Intermediate stage

- 'done' — Algorithm terminated

• interval — Optional interval argument

“Parameterizing Functions Called by patternsearch” on page 5-52 explains
how to provide additional parameters to the function.

8-42

Genetic Algorithm Options

The output function returns the following arguments to ga:

• state — Structure containing information about the current generation

• options — Options structure modified by the output function. This
argument is optional.

• optchanged — Flag indicating changes to options

Display to Command Window Options
Level of display ('Display') specifies how much information is displayed
at the command line while the genetic algorithm is running. The available
options are

• Off ('off') — No output is displayed.

• Iterative (’iter') — Information is displayed at each iteration.

• Diagnose ('diagnose') — Information is displayed at each iteration. In
addition, the diagnostic lists some problem information and the options
that have been changed from the defaults.

• Final ('final') — The reason for stopping is displayed.

Both Iterative and Diagnose display the following information:

• Generation — Generation number

• f-count — Cumulative number of fitness function evaluations

• Best f(x) — Best fitness function value

• Mean f(x) — Mean fitness function value

• Stall generations — Number of generations since the last improvement
of the fitness function

When a nonlinear constraint function has been specified, Iterative and
Diagnose will not display the Mean f(x), but will additionally display:

• Max Constraint — Maximum nonlinear constraint violation

The default value of Level of display is

8-43

8 Options Reference

• Off in the Genetic Algorithm Tool

• 'final' in an options structure created using gaoptimset

Vectorize Option
The vectorize option specifies whether the computation of the fitness function
is vectorized. Set Set Objective function is vectorized to On to indicate
that the fitness function is vectorized. When Objective function is
vectorized is Off, the algorithm calls the fitness function on one individual
at a time as it loops through the population.

See “Vectorizing the Fitness Function” on page 6-58 for an example.

8-44

Simulated Annealing and Threshold Acceptance Algorithm Options

Simulated Annealing and Threshold Acceptance Algorithm
Options

In this section...

“saoptimset At The Command Line” on page 8-45

“Plot Options” on page 8-45

“Temperature Options” on page 8-47

“Algorithm Settings” on page 8-48

“Hybrid Function Options” on page 8-49

“Stopping Criteria Options” on page 8-49

“Output Function Options” on page 8-50

“Display Options” on page 8-51

saoptimset At The Command Line
You specify options by creating an options structure using the function
saoptimset, as follows:

options = saoptimset('Param1', value1, 'Param2', value2, ...);

See “Setting Options for simulannealbnd and threshacceptbnd at the
Command Line” on page 7-3 for examples.

Each option in this section is listed by its field name in the options structure.
For example, InitialTemperature refers to the corresponding field of the
options structure.

Plot Options
Plot options enable you to plot data from the simulated annealing or threshold
acceptance solver while it is running. When you specify plot functions and run
the algorithm, a plot window displays the plots on separate axes. Right-click
on any subplot to view a larger version of the plot in a separate figure window.

8-45

8 Options Reference

PlotInterval specifies the number of iterations between consecutive calls to
the plot function.

To display a plot when calling simulannealbnd or threshacceptbnd from the
command line, set the PlotFcns field of options to be a function handle to
the plot function. You can specify any of the following plots:

• @saplotbestf plots the best objective function value.

• @saplotbestx plots the current best point.

• @saplotf plots the current function value.

• @saplotx plots the current point.

• @saplotstopping plots stopping criteria levels.

• @saplottemperature plots the temperature at each iteration.

• @myfun plots a custom plot function, where myfun is the name of your
function. See “Structure of the Plot Functions” on page 8-4 for a description
of the syntax.

For example, to display the best objective plot, set options as follows

options = saoptimset('PlotFcns', @saplotbestf);

To display multiple plots, use the cell array syntax

options = saoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are function handles to the plot
functions.

Structure of the Plot Functions
The first line of a plot function has the form

function stop = plotfun(options, optimvalues, flag)

The input arguments to the function are

• options — Options structure created using saoptimset.

8-46

Simulated Annealing and Threshold Acceptance Algorithm Options

• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- fval — Objective function value at x

- bestx — Best point found so far

- bestfval — Objective function value at best point

- temperature — Current temperature

- iteration — Current iteration

- funccount — Number of function evaluations

- t0 — Start time for algorithm

- k — Annealing parameter

- tau — Threshold acceptance sequence (for threshold acceptance solver
only)

• flag — Current state in which the plot function is called. The possible
values for flag are

- 'init' — Initialization state

- 'iter' — Iteration state

- 'done' — Final state

The output argument stop provides a way to stop the algorithm at the current
iteration. stop can have the following values:

• false — The algorithm continues to the next iteration.

• true — The algorithm terminates at the current iteration.

Temperature Options
Temperature options specify how the temperature will be lowered at each
iteration over the course of the algorithm.

• InitialTemperature — Initial temperature at the start of the algorithm.
The default is 100.

8-47

8 Options Reference

• TemperatureFcn — Function used to update the temperature schedule.
The choices are:

- @temperatureexp — The temperature at an iteration is reduced
exponentially at each iteration. This is the default.

- @temperaturefast — Uses the fast annealing function.

- @temperaturebolz — Uses the Boltzmann annealing function.

- @myfun — Uses a custom function, myfun, to update temperature. See
the functions above for syntax.

• ReannealInterval — Number of points accepted before reannealing. The
default value is 100.

Algorithm Settings
Algorithm settings define algorithmic specific parameters used in generating
new points at each iteration.

Parameters that can be specified for the simulated annealing and threshold
acceptance algorithms are:

• AnnealingFcn — Function used to generate new points for the next
iteration. The choices are:

- @annealingfast — Uses the fast annealing algorithm. This is the
default.

- @annealingbolz — Uses the Boltzmann annealing algorithm.

- @myfun — Uses a custom annealing algorithm, myfun. See the functions
above for syntax.

AcceptanceFcn — Function used to determine whether a new point
is accepted or not. The default function varies depending on which
solver/algorithm you are using. The choices are:

• @acceptancesa — Simulated annealing acceptance function. The default
for simulannealbnd. This function cannot be used with threshacceptbnd.

• @acceptancethresh — Threshold acceptance function. The default for
threshacceptbnd. This function cannot be used with simulannealbnd.

8-48

Simulated Annealing and Threshold Acceptance Algorithm Options

• @myfun — A custom acceptance function, myfun. See the functions above
for syntax.

Hybrid Function Options
A hybrid function is another minimization function that runs during or at the
end of iterations of the solver. You can specify a hybrid function using the
HybridFcn option. The choices are

• [] — No hybrid function

• @fminsearch — Uses the MATLAB function fminsearch to perform
unconstrained minimization

• @patternsearch — Uses patternsearch to perform constrained or
unconstrained minimization

• @fminunc — Uses the Optimization Toolbox function fminunc to perform
unconstrained minimization

• @fmincon — Uses the Optimization Toolbox function fmincon to perform
constrained minimization

HybridInterval specifies the interval (if not never or end) at which the
hybrid function is called.

Stopping Criteria Options
Stopping criteria determine what causes the algorithm to terminate. You can
specify the following options:

• TolFun — The algorithm runs until the average change in value of the
objective function in StallIterLim iterations is less than TolFun. The
default value is 1e-6.

• MaxIter — The algorithm stops if the number of iterations exceeds this
maximum number of iterations. You can specify the maximum number of
iterations as a positive integer or Inf. Inf is the default.

• MaxFunEval specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds
the maximum number of function evaluations. The allowed maximum is
3000*numberofvariables.

8-49

8 Options Reference

• TimeLimit specifies the maximum time in seconds the algorithm runs
before stopping.

• ObjectiveLimit — The algorithm stops if the best objective function value
is less than or equal to the value of ObjectiveLimit.

Output Function Options
Output functions are functions that the algorithm calls at each iteration.
The default value is to have no output function, []. You must first create
an output function using the syntax described in “Structure of the Output
Function” on page 8-50. Then, specify your function as @myfun, where myfun
is the name of your function.

If you are using simulanneal, set

options = saoptimset('OutputFcns', @myfun);

To see a template that you can use to write your own output functions, enter

edit saoutputfcntemplate

at the MATLAB command line.

Structure of the Output Function
The output function has the following calling syntax.

[stop, options, optchanged] = myfun(options, optimvalues, flag)

The function has the following input arguments:

• options — Options structure created using saoptimset.

• optimvalues — Structure containing information about the current state
of the solver. The structure contains the following fields:

- x — Current point

- fval — Objective function value at x

- bestx — Best point found so far

- bestfval — Objective function value at best point

8-50

Simulated Annealing and Threshold Acceptance Algorithm Options

- temperature — Current temperature

- iteration — Current iteration

- funccount — Number of function evaluations

- t0 — Start time for algorithm

- k — Annealing parameter

- tau — Threshold acceptance sequence (for threshold acceptance solver
only)

• flag — Current state in which the output function is called. The possible
values for flag are

- 'init' — Initialization state

- 'iter' — Iteration state

- 'done' — Final state

The output function returns the following arguments:

• stop — Provides a way to stop the algorithm at the current iteration. stop
can have the following values:

- false — The algorithm continues to the next iteration.

- true — The algorithm terminates at the current iteration.

• options — Options structure modified by the output function.

• optchanged — A boolean flag indicating changes were made to options.
This must be set to true if options are changed.

Display Options
Use the Display option to specify how much information is displayed at the
command line while the algorithm is running. The available options are

• off — No output is displayed. This is the default value for an options
structure created using saoptimset.

• iter — Information is displayed at each iteration.

8-51

8 Options Reference

• diagnose — Information is displayed at each iteration. In addition, the
diagnostic lists some problem information and the options that have been
changed from the defaults.

• final — The reason for stopping is displayed. This is the default.

Both iter and diagnose display the following information:

• Iteration — Iteration number

• f-count — Cumulative number of objective function evaluations

• Best f(x) — Best objective function value

• Current f(x) — Current objective function value

• Mean Temperature — Mean temperature function value

8-52

9

Functions — By Category

Genetic Algorithm (p. 9-2) Use genetic algorithm and Genetic
Algorithm Tool, and modify genetic
algorithm options

Direct Search (p. 9-2) Use direct search and Pattern Search
Tool, and modify pattern search
options

Simulated Annealing and Threshold
Acceptance Algorithms (p. 9-3)

Use simulated annealing and
threshold acceptance algorithms,
and modify algorithm options

9 Functions — By Category

Genetic Algorithm
ga Find minimum of function using

genetic algorithm

gamultiobj Find minima of multiple functions
using genetic algorithm

gaoptimget Obtain values of genetic algorithm
options structure

gaoptimset Create genetic algorithm options
structure

gatool Open Genetic Algorithm Tool

Direct Search
patternsearch Find minimum of function using

pattern search

psearchtool Open Pattern Search Tool

psoptimget Obtain values of pattern search
options structure

psoptimset Create pattern search options
structure

9-2

Simulated Annealing and Threshold Acceptance Algorithms

Simulated Annealing and Threshold Acceptance
Algorithms

saoptimget Values of simulated annealing or
threshold acceptance algorithm
options structure

saoptimset Create simulated annealing
algorithm or threshold acceptance
options structure

simulannealbnd Find unconstrained or
bound-constrained minimum of
function of several variables using
simulated annealing algorithm

threshacceptbnd Find unconstrained or
bound-constrained minimum of
function of several variables using
threshold acceptance algorithm

9-3

9 Functions — By Category

9-4

10

Functions — Alphabetical
List

ga

Purpose Find minimum of function using genetic algorithm

Syntax x = ga(fitnessfcn,nvars)
x = ga(fitnessfcn,nvars,A,b)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
x = ga(problem)
[x, fval] = ga(...)
[x, fval, exitflag] = ga(...)

Description ga implements the genetic algorithm at the command line to minimize
an objective function.

x = ga(fitnessfcn,nvars) finds a local unconstrained minimum, x,
to the objective function, fitnessfcn. nvars is the dimension (number
of design variables) of fitnessfcn. The objective function, fitnessfcn,
accepts a vector x of size 1-by-nvars, and returns a scalar evaluated at x.

Note To write a function with additional parameters to the independent
variables that can be called by ga, see the section on “Parameterizing
Functions Called by ga” on page 6-65.

x = ga(fitnessfcn,nvars,A,b) finds a local minimum x to
fitnessfcn, subject to the linear inequalities A x b∗ ≤ . fitnessfcn
accepts input x and returns a scalar function value evaluated at x.

If the problem has m linear inequality constraints and n variables, then

• A is a matrix of size m-by-n.

• b is a vector of length m.

Note that the linear constraints are not satisfied when the
PopulationType option is set to 'bitString' or 'custom'.

10-2

ga

x = ga(fitnessfcn,nvars,A,b,Aeq,beq) finds a local minimum x to

fitnessfcn, subject to the linear equalities Aeq x beq∗ = as well as
A x b∗ ≤ . (Set A=[] and b=[] if no inequalities exist.)

If the problem has r linear equality constraints and n variables, then

• Aeq is a matrix of size r-by-n.

• beq is a vector of length r.

Note that the linear constraints are not satisfied when the
PopulationType option is set to 'bitString' or 'custom'.

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB) defines a set of lower
and upper bounds on the design variables, x, so that a solution is found
in the range LB x UB≤ ≤ . Use empty matrices for LB and UB if no
bounds exist. Set LB(i) = -Inf if x(i) is unbounded below; set UB(i) = Inf
if x(i) is unbounded above.

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon) subjects
the minimization to the constraints defined in nonlcon. The function
nonlcon accepts x and returns the vectors C and Ceq, representing the
nonlinear inequalities and equalities respectively. ga minimizes the
fitnessfcn such that C(x)≤0 and Ceq(x)=0. (Set LB=[] and UB=[]
if no bounds exist.)

Note that the nonlinear constraints are not satisfied when the
PopulationType option is set to 'bitString' or 'custom'.

x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
minimizes with the default optimization parameters replaced by values
in the structure options, which can be created using the gaoptimset
function. See the gaoptimset reference page for details.

x = ga(problem) finds the minimum for problem, where problem is a
structure containing the following fields:

fitnessfcn Fitness function

nvars Number of design variables

10-3

ga

options Options structure created using gaoptimset

Aineq A matrix for inequality constraints

Bineq b vector for inequality constraints

Aeq A matrix for equality constraints

Beq b vector for equality constraints

LB Lower bound on x

UB Upper bound on x

nonlcon Nonlinear constraint function

randstate Optional field to reset rand state

randnstate Optional field to reset randn state

[x, fval] = ga(...) returns fval, the value of the fitness function
at x.

[x, fval, exitflag] = ga(...) returns exitflag, an integer
identifying the reason the algorithm terminated. The following lists
the values of exitflag and the corresponding reasons the algorithm
terminated.

• 1 — Average cumulative change in value of the fitness function over
options.StallGenLimit generations less than options.TolFun and
constraint violation less than options.TolCon.

• 2 — Fitness limit reached and constraint violation less than
options.TolCon.

• 3 — The value of the fitness function did not change in
options.StallGenLimit generations and constraint violation less
than options.TolCon.

• 4 — Magnitude of step smaller than machine precision and constraint
violation less than options.TolCon.

• 0 — Maximum number of generations exceeded.

• -1 — Optimization terminated by the output or plot function.

10-4

ga

• -2 — No feasible point found.

• -4 — Stall time limit exceeded.

• -5 — Time limit exceeded.

[x, fval, exitflag, output] = ga(...) returns output, a
structure that contains output from each generation and other
information about the performance of the algorithm. The output
structure contains the following fields:

• randstate — The state of rand, the MATLAB random number
generator, just before the algorithm started.

• randnstate — The state of randn the MATLAB normal random
number generator, just before the algorithm started. You can use the
values of randstate and randnstate to reproduce the output of ga.
See “Reproducing Your Results” on page 6-27.

• generations — The number of generations computed.

• funccount — The number of evaluations of the fitness function

• message — The reason the algorithm terminated.

• maxconstraint — Maximum constraint violation, if any.

[x, fval, exitflag, output, population] = ga(...) returns the
matrix, population, whose rows are the final population.

[x, fval, exitflag, output, population, scores] = ga(...)
returns scores the scores of the final population.

Note For problems that use the population type Double Vector (the
default), ga does not accept functions whose inputs are of type complex.
To solve problems involving complex data, write your functions so that
they accept real vectors, by separating the real and imaginary parts.

10-5

ga

Example Given the following inequality constraints and lower bounds

the following code finds the minimum of the function, lincontest6,
that is provided with the toolbox:

A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);
[x, fval, exitflag] = ga(@lincontest6,...
2,A,b,[],[],lb)

Optimization terminated:
average change in the fitness value less than
options.TolFun.

x =
0.7794 1.2205

fval =
-8.03916

exitflag =
1

References [1] Goldberg, David E., Genetic Algorithms in Search, Optimization &
Machine Learning, Addison-Wesley, 1989.

[2] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Algorithm for Optimization with General

10-6

ga

Constraints and Simple Bounds”, SIAM Journal on Numerical Analysis,
Volume 28, Number 2, pages 545–572, 1991.

[3] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Barrier Algorithm for Optimization with
General Inequality Constraints and Simple Bounds”, Mathematics of
Computation, Volume 66, Number 217, pages 261–288, 1997.

See Also gaoptimget,gaoptimset, gatool, patternsearch, simulannealbnd,
threshacceptbnd

10-7

gamultiobj

Purpose Find minima of multiple functions using genetic algorithm

Syntax X = gamultiobj(FITNESSFCN,NVARS)
X = gamultiobj(FITNESSFCN,NVARS,A,b)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB)
X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,options)
[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS, ...)
[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = gamultiobj(FITNESSFCN,

...)
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,

SCORE] = gamultiobj(FITNESSFCN, ...)

Description gamultiobj implements the genetic algorithm at the command line to
minimize a multicomponent objective function.

X = gamultiobj(FITNESSFCN,NVARS) finds a local Pareto set X of the
objective functions defined in FITNESSFCN. NVARS is the dimension of
the optimization problem (number of decision variables). FITNESSFCN
accepts a vector X of size 1-by-NVARS and returns a vector of size
1-by-numberOfObjectives evaluated at a decision variable. X is a
matrix with NVARS columns. The number of rows in X is the same as the
number of Pareto solutions. All solutions in a Pareto set are equally
optimal; it is up to the designer to select a solution in the Pareto set
depending on the application.

X = gamultiobj(FITNESSFCN,NVARS,A,b) finds a local Pareto set X of
the objective functions defined in FITNESSFCN, subject to the linear
inequalities A x b∗ ≤ . Linear constraints are supported only for the
default PopulationType option ('doubleVector'). Other population
types, e.g., 'bitString' and 'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq) finds a local
Pareto set X of the objective functions defined in FITNESSFCN, subject

to the linear equalities Aeq x beq∗ = as well as the linear inequalities

10-8

gamultiobj

A x b∗ ≤ . (Set A=[] and b=[] if no inequalities exist.) Linear
constraints are supported only for the default PopulationType option
('doubleVector'). Other population types, e.g., 'bitString' and
'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB) defines
a set of lower and upper bounds on the design variables X so that
a local Pareto set is found in the range LB x UB≤ ≤ . Use empty
matrices for LB and UB if no bounds exist. Set LB(i) = -Inf if X(i)
is unbounded below; set UB(i) = Inf if X(i) is unbounded above.
Bound constraints are supported only for the default PopulationType
option ('doubleVector'). Other population types, e.g., 'bitString'
and 'custom', are not supported.

X = gamultiobj(FITNESSFCN,NVARS,A,b,Aeq,beq,LB,UB,options)
finds a Pareto set X with the default optimization parameters replaced
by values in the structure options. options can be created with the
gaoptimset function.

[X,FVAL] = gamultiobj(FITNESSFCN,NVARS, ...) returns a matrix
FVAL, the value of all the objective functions defined in FITNESSFCN
at all the solutions in X. FVAL has numberOfObjectives columns and
same number of rows as does X.

[X,FVAL,EXITFLAG] = gamultiobj(FITNESSFCN,NVARS, ...) returns
EXITFLAG, which describes the exit condition of gamultiobj. Possible
values of EXITFLAG and the corresponding exit conditions are listed
in this table.

EXITFLAG
Value

Exit Condition

1 Average change in value of the spread of Pareto set
over options.StallGenLimit generations less than
options.TolFun

0 Maximum number of generations exceeded

-1 Optimization terminated by the output or by the plot
function

10-9

gamultiobj

EXITFLAG
Value

Exit Condition

-2 No feasible point found

-5 Time limit exceeded

[X,FVAL,EXITFLAG,OUTPUT] = gamultiobj(FITNESSFCN,NVARS,
...) returns a structure OUTPUT with the following fields:

OUTPUT Field Meaning

Output.randstate State of the function rand used before the
genetic algorithm started

Output.randnstate State of the function randn used before the
genetic algorithm started

Output.generations Total number of generations, excluding
HybridFcn iterations

Output.funccount Total number of function evaluations

Output.maxconstraint Maximum constraint violation, if any

Output.message gamultiobj termination message

[X,FVAL,EXITFLAG,OUTPUT,POPULATION] =
gamultiobj(FITNESSFCN, ...) returns the final
POPULATION at termination.

[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORE] =
gamultiobj(FITNESSFCN, ...) returns the SCORE of the
final POPULATION.

Example GA Multiobjective

This example optimizes two objectives defined by Schaffer’s second
function: a vector-valued function of two components and one input
argument. The Pareto front is disconnected. Define this function in
an M-file:

10-10

gamultiobj

function y = schaffer2(x) % y has two columns

% Initialize y for two objectives and for all x
y = zeros(length(x),2);

% Evaluate first objective.
% This objective is piecewise continuous.
for i = 1:length(x)

if x(i) <= 1
y(i,1) = -x(i);

elseif x(i) <=3
y(i,1) = x(i) -2;

elseif x(i) <=4
y(i,1) = 4 - x(i);

else
y(i,1) = x(i) - 4;

end
end

% Evaluate second objective
y(:,2) = (x -5).^2;

First, plot the two objectives:

x = -1:0.1:8;
y = schaffer2(x);

plot(x,y(:,1),'.r'); hold on
plot(x,y(:,2),'.b');

The two component functions compete in the range [1, 3] and [4, 5]. But
the Pareto-optimal front consists of only two disconnected regions: [1, 2]
and [4, 5]. This is because the region [2, 3] is inferior to [1, 2].

Next, impose a bound constraint on x, − ≤ ≤5 10x setting

lb = -5;
ub = 10;

10-11

gamultiobj

The best way to view the results of the genetic algorithm is to visualize
the Pareto front directly using the @gaplotpareto option. To optimize
Schaffer’s function, a larger population size than the default (15) is
needed, because of the disconnected front. This example uses 60. Set
the optimization options as:

options = gaoptimset('PopulationSize',60,'PlotFcns',...
@gaplotpareto);

Now call gamultiobj, specifying one independent variable and only the
bound constraints:

[x,f,exitflag] = gamultiobj(@schaffer2,1,[],[],[],[],...
lb,ub,options);

Optimization terminated: average change in the spread of
Pareto solutions less than options.TolFun.

exitflag
exitflag = 1

The vectors x, f(:,1), and f(:,2) respectively contain the Pareto set
and both objectives evaluated on the Pareto set.

Demos

The gamultiobjfitness demo solves a simple problem with one
decision variable and two objectives.

The gamultiobjoptionsdemo demo shows how to set options for
multiobjective optimization.

References [1] Deb, Kalyanmoy. Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, 2001.

See Also ga, gaoptimget, gaoptimset, patternsearch, @ (Special
Characters), rand, randn

10-12

gaoptimget

Purpose Obtain values of genetic algorithm options structure

Syntax val = gaoptimget(options, 'name')
val = gaoptimget(options, 'name', default)

Description val = gaoptimget(options, 'name') returns the value of the
parameter name from the genetic algorithm options structure options.
gaoptimget(options, 'name') returns an empty matrix [] if the
value of name is not specified in options. It is only necessary to type
enough leading characters of name to uniquely identify it. gaoptimget
ignores case in parameter names.

val = gaoptimget(options, 'name', default) returns the 'name'
parameter, but will return the default value if the name parameter is
not specified (or is []) in options.

See Also For more about these options, see “Genetic Algorithm Options” on page
8-23.

ga, gamultiobj, gaoptimset, gatool

10-13

gaoptimset

Purpose Create genetic algorithm options structure

Syntax gaoptimset
options = gaoptimset
options = gaoptimset('param1',value1,'param2',value2,...)
options = gaoptimset(oldopts,'param1',value1,...)
options = gaoptimset(oldopts,newopts)

Description gaoptimset with no input or output arguments displays a complete list
of parameters with their valid values.

options = gaoptimset (with no input arguments) creates a structure
called options that contains the options, or parameters, for the genetic
algorithm and sets parameters to [], indicating default values will
be used.

options = gaoptimset('param1',value1,'param2',value2,...)
creates a structure options and sets the value of 'param1' to value1,
'param2' to value2, and so on. Any unspecified parameters are set
to their default values. It is sufficient to type only enough leading
characters to define the parameter name uniquely. Case is ignored
for parameter names.

options = gaoptimset(oldopts,'param1',value1,...) creates a
copy of oldopts, modifying the specified parameters with the specified
values.

options = gaoptimset(oldopts,newopts) combines an existing
options structure, oldopts, with a new options structure, newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

Options The following table lists the options you can set with gaoptimset. See
“Genetic Algorithm Options” on page 8-23 for a complete description of
these options and their values. Values in {} denote the default value.
You can also view the optimization parameters and defaults by typing
gaoptimset at the command line.

10-14

gaoptimset

Option Description Values

CreationFcn Handle to the function
that creates the initial
population

{@gacreationuniform}

CrossoverFcn Handle to the function that
the algorithm uses to create
crossover children

@crossoverheuristic
{@crossoverscattered}
@crossoverintermediate
@crossoversinglepoint
@crossovertwopoint
@crossoverarithmetic

CrossoverFraction The fraction of the
population at the next
generation, not including
elite children, that is created
by the crossover function

Positive scalar | {0.8}

Display Level of display 'off' | 'iter' | 'diagnose' |
{'final'}

DistanceMeasureFcn Handle to the function that
computes distance measure
of individuals, computed in
decision variable or design
space (genotype) or in
function space (phenotype)

{@distancecrowding,'phenotype'}

EliteCount Positive integer specifying
how many individuals in
the current generation are
guaranteed to survive to the
next generation

Positive integer | {2}

FitnessLimit Scalar. If the fitness
function attains the value
of FitnessLimit, the
algorithm halts.

Scalar | {-Inf}

10-15

gaoptimset

Option Description Values

FitnessScalingFcn Handle to the function that
scales the values of the
fitness function

@fitscalingshiftlinear
@fitscalingprop @fitscalingtop
{@fitscalingrank}

Generations Positive integer specifying
the maximum number
of iterations before the
algorithm halts

Positive integer |{100}

HybridFcn Handle to a function that
continues the optimization
after ga terminates

Function handle | @fminsearch
@patternsearch @fminunc
@fmincon {[]}

InitialPenalty Initial value of penalty
parameter

Positive scalar | {10}

InitialPopulation Initial population used to
seed the genetic algorithm;
can be partial

Matrix | {[]}

InitialScores Initial scores used to
determine fitness; can be
partial

Column vector | {[]}

MigrationDirection Direction of migration 'both' | {'forward'}

MigrationFraction Scalar between 0 and 1
specifying the fraction
of individuals in each
subpopulation that migrates
to a different subpopulation

Scalar | {0.2}

MigrationInterval Positive integer specifying
the number of generations
that take place between
migrations of individuals
between subpopulations

Positive integer | {20}

10-16

gaoptimset

Option Description Values

MutationFcn Handle to the function that
produces mutation children

@mutationuniform
@mutationadaptfeasible
{@mutationgaussian}

OutputFcns Functions that ga calls at
each iteration

@gaoutputgen | {[]}

ParetoFraction Scalar between 0 and 1
specifying the fraction of
individuals to keep on the
first Pareto front while the
solver selects individuals
from higher fronts

Scalar | {0.35}

PenaltyFactor Penalty update parameter Positive scalar | {100}

PlotFcns Array of handles to
functions that plot data
computed by the algorithm

@gaplotbestf @gaplotbestindiv
@gaplotdistance
@gaplotexpectation
@gaplotgeneology
@gaplotselection @gaplotrange
@gaplotscorediversity
@gaplotscores @gaplotstopping
| {[]}

PlotInterval Positive integer specifying
the number of generations
between consecutive calls to
the plot functions

Positive integer | {1}

PopInitRange Matrix or vector specifying
the range of the individuals
in the initial population

Matrix or vector | [0;1]

PopulationSize Size of the population Positive integer | {20}

10-17

gaoptimset

Option Description Values

PopulationType String describing the data
type of the population

'bitstring' | 'custom' |
{'doubleVector'}

Note that linear and nonlinear
constraints are not satisfied
when PopulationType is set to
'bitString' or 'custom'.

SelectionFcn Handle to the function that
selects parents of crossover
and mutation children

@selectionremainder
@selectionuniform
{@selectionstochunif}
@selectionroulette
@selectiontournament

StallGenLimit Positive integer. The
algorithm stops if there
is no improvement in
the objective function for
StallGenLimit consecutive
generations.

Positive integer | {50}

StallTimeLimit Positive scalar. The
algorithm stops if there
is no improvement in
the objective function for
StallTimeLimit seconds.

Positive scalar | {20}

TimeLimit Positive scalar. The
algorithm stops after
running for TimeLimit
seconds.

Positive scalar | {Inf}

TolCon Positive scalar. TolCon
is used to determine the
feasibility with respect to
nonlinear constraints.

Positive scalar | {1e-6}

10-18

gaoptimset

Option Description Values

TolFun Positive scalar. The
algorithm runs until the
cumulative change in the
fitness function value over
StallGenLimit is less than
TolFun.

Positive scalar | {1e-6}

Vectorized String specifying whether
the computation of the
fitness function is vectorized

'on' | {'off'}

See Also For more about these options, see “Genetic Algorithm Options” on page
8-23.

ga, gamultiobj, gaoptimget, gatool

10-19

gatool

Purpose Open Genetic Algorithm Tool

Syntax gatool
gatool(optstruct)

Description gatool opens the Genetic Algorithm Tool, a graphical user interface
(GUI) to the genetic algorithm, as shown here.

10-20

gatool

gatool(optstruct) starts the Genetic Algorithm Tool with optstruct,
which can be either a genetic algorithm options structure or genetic
algorithm problem structure. An options structure can be created using
gaoptimset.

10-21

gatool

gatool can run the genetic algorithm solver, ga on optimization
problems, and it allows you to modify several ga options at run time,
while you watch your results. See “Using the Genetic Algorithm Tool”
on page 3-4 for a complete description of the tool.

See Also ga, gaoptimget, gaoptimset, psearchtool

10-22

patternsearch

Purpose Find minimum of function using pattern search

Syntax x = patternsearch(@fun,x0)
x = patternsearch(@fun,x0,A,b)
x = patternsearch(@fun,x0,A,b,Aeq,beq)
x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB)
x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon)
x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon,options)
x = patternsearch(problem)
[x, fval] = patternsearch(@fun,x0, ...)
[x, fval, exitflag] = patternsearch(@fun,x0, ...)
[x, fval, exitflag, output] = patternsearch(@fun,x0, ...)

Description patternsearch finds the minimum of a function using a pattern search.

x = patternsearch(@fun,x0) finds the local minimum, x, to the
MATLAB function, fun, that computes the values of the objective
function f(x), and x0 is an initial point for the pattern search algorithm.
The function patternsearch accepts the objective function as a function
handle of the form @fun. The function fun accepts a vector input and
returns a scalar function value.

Note To write a function with additional parameters to the independent
variables that can be called by patternsearch, see the section on
“Parameterizing Functions Called by patternsearch” on page 5-52.

x = patternsearch(@fun,x0,A,b) finds a local minimum x to the
function fun, subject to the linear inequality constraints represented
in matrix form by Ax b≤ .

If the problem has m linear inequality constraints and n variables, then

• A is a matrix of size m-by-n.

• b is a vector of length m.

10-23

patternsearch

x = patternsearch(@fun,x0,A,b,Aeq,beq) finds a local minimum x
to the function fun, starting at x0, and subject to the constraints

Ax b≤
Aeq x beq∗ =

where Aeq x beq∗ = represents the linear equality constraints in
matrix form. If the problem has r linear equality constraints and n
variables, then

• Aeq is a matrix of size r-by-n.

• beq is a vector of length r.

If there are no inequality constraints, pass empty matrices, [], for
A and b.

x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB) defines a set of
lower and upper bounds on the design variables, x, so that a solution is
found in the range LB x UB<≤ <≤ . If the problem has n variables, LB
and UB are vectors of length n. If LB or UB is empty (or not provided),
it is automatically expanded to -Inf or Inf, respectively. If there are
no inequality or equality constraints, pass empty matrices for A, b, Aeq
and beq.

x = patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon) subjects
the minimization to the constraints defined in nonlcon, a nonlinear
constraint function. The function nonlcon accepts x and returns
the vectors C and Ceq, representing the nonlinear inequalities and

equalities respectively. fmincon minimizes fun such that C x() ≤ 0 and
Ceq(x)=0. (Set LB=[] and UB=[] if no bounds exist.)

x =
patternsearch(@fun,x0,A,b,Aeq,beq,LB,UB,nonlcon,options)
minimizes fun with the default optimization parameters replaced
by values in options. The structure options can be created
using psoptimset.

10-24

patternsearch

x = patternsearch(problem) finds the minimum for problem, where
problem is a structure containing the following fields:

• objective — Objective function

• X0 — Starting point

• Aineq — Matrix for the inequality constraints

• Bineq — Vector for the inequality constraints

• Aeq — Matrix for the equality constraints

• Beq — Vector for the equality constraints

• LB — Lower bound for x

• UB — Upper bound for x

• nonlcon — Nonlinear constraint function

• options — Options structure created with psoptimset

• randstate — Optional field to reset the state of rand

• randnstate — Optional field to reset the state of randn

You can create the structure problem by exporting a problem from the
Pattern Search Tool, as described in “Importing and Exporting Options
and Problems” on page 5-15.

Note problem must have all the fields as specified above.

[x, fval] = patternsearch(@fun,x0, ...) returns the value of the
objective function fun at the solution x.

[x, fval, exitflag] = patternsearch(@fun,x0, ...) returns
exitflag, which describes the exit condition of patternsearch.
Possible values of exitflag and the corresponding conditions are

10-25

patternsearch

1 Magnitude of mesh size is less than specified tolerance and
constraint violation less than options.TolCon.

2 Change in x less than the specified tolerance and constraint
violation less than options.TolCon.

4 Magnitude of step smaller than machine precision and
constraint violation less than options.TolCon.

0 Maximum number of function evaluations or iterations
reached.

-1 Optimization terminated by the output or plot function.

-2 No feasible point found.

[x, fval, exitflag, output] = patternsearch(@fun,x0, ...)
returns a structure output containing information about the search.
The output structure contains the following fields:

• function — Objective function

• problemtype — Type of problem: unconstrained, bound constrained
or linear constrained

• pollmethod — Polling technique

• searchmethod — Search technique used, if any

• iteration — Total number of iterations

• funccount — Total number of function evaluations

• meshsize — Mesh size at x

• maxconstraint — Maximum constraint violation, if any

• message — Reason why the algorithm terminated

10-26

patternsearch

Note patternsearch does not accepts functions whose inputs are of
type complex. To solve problems involving complex data, write your
functions so that they accept real vectors, by separating the real and
imaginary parts.

Example Given the following constraints

the following code finds the minimum of the function, lincontest6,
that is provided with the toolbox:

A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);
[x, fval, exitflag] = patternsearch(@lincontest6,[0 0],...

A,b,[],[],lb)
Optimization terminated: mesh size less than

options.TolMesh.

x =

0.6667 1.3333

fval =

-8.2222

10-27

patternsearch

exitflag =

1

References [1] Torczon, Virginia, “On the Convergence of Pattern Search
Algorithms”,SIAM Journal on Optimization, Volume 7, Number 1,
pages 1–25, 1997.

[2] Lewis, Robert Michael and Virginia Torczon, “Pattern Search
Algorithms for Bound Constrained Minimization”, SIAM Journal on
Optimization, Volume 9, Number 4, pages 1082–1099, 1999.

[3] Lewis, Robert Michael and Virginia Torczon, “Pattern Search
Methods for Linearly Constrained Minimization”, SIAM Journal on
Optimization, Volume 10, Number 3, pages 917–941, 2000.

[4] Audet, Charles and J. E. Dennis Jr., “Analysis of Generalized
Pattern Searches”, SIAM Journal on Optimization, Volume 13, Number
3, pages 889–903, 2003.

[5] Lewis, Robert Michael and Virginia Torczon, “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization
with General Constraints and Simple Bounds”, SIAM Journal on
Optimization, Volume 12, Number 4, pages 1075–1089, 2002.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization
with General Constraints and Simple Bounds”, SIAM Journal on
Numerical Analysis, Volume 28, Number 2, pages 545–572, 1991.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent
Augmented Lagrangian Pattern Search Algorithm for Optimization
with General Constraints and Simple Bounds”, Mathematics of
Computation, Volume 66, Number 217, pages 261–288, 1997.

10-28

patternsearch

See Also psearchtool, psoptimget, psoptimset, ga, simulannealbnd,
threshacceptbnd

10-29

psearchtool

Purpose Open Pattern Search Tool

Syntax psearchtool
psearchtool(optstruct)

Description psearchtool opens the Pattern Search Tool, a graphical user interface
(GUI) for performing pattern searches, as shown in the figure below. You
can use the Pattern Search Tool to run a pattern search on optimization
problems and display the results. See “Using the Pattern Search Tool”
on page 2-3 for a complete description of the tool.

psearchtool(optstruct) starts the Pattern Search tool using
optstruct, which can be a Pattern Search options structure or Pattern
Search problem structure. An options structure can be created using
psoptimset.

psearchtool runs the Pattern Search Algorithm solver, patternsearch,
on optimization problems, and it allows you to modify several
patternsearch options at run time, while you watch your results.

10-30

psearchtool

See Also patternsearch, psoptimget, psoptimset, gatool

10-31

psoptimget

Purpose Obtain values of pattern search options structure

Syntax val = psoptimget(options,'name')
val = psoptimget(options,'name',default)

Description val = psoptimget(options,'name') returns the value of the
parameter name from the pattern search options structure options.
psoptimget(options, 'name') returns an empty matrix [] if the
value of name is not specified in options. It is only necessary to type
enough leading characters of name to uniquely identify it. psoptimget
ignores case in parameter names.

val = psoptimget(options,'name',default) returns the value of the
parameter name from the pattern search options structure options, but
returns default if the parameter is not specified (as in []) in options.

Example val = psoptimget(opts,'TolX',1e-4);

returns val = 1e-4 if the TolX property is not specified in opts.

See Also For more about these options, see “Pattern Search Options” on page 8-2.

psoptimset, patternsearch

10-32

psoptimset

Purpose Create pattern search options structure

Syntax psoptimset
options = psoptimset
options = psoptimset('param1',value1,'param2',value2,...)
options = psoptimset(oldopts,'param1',value1,...)
options = psoptimset(oldopts,newopts)

Description psoptimset with no input or output arguments displays a complete list
of parameters with their valid values.

options = psoptimset (with no input arguments) creates a structure
called options that contains the options, or parameters, for the pattern
search and sets parameters to their default values.

options = psoptimset('param1',value1,'param2',value2,...)
creates a structure options and sets the value of 'param1' to value1,
'param2' to value2, and so on. Any unspecified parameters are set
to their default values. It is sufficient to type only enough leading
characters to define the parameter name uniquely. Case is ignored
for parameter names.

options = psoptimset(oldopts,'param1',value1,...) creates a
copy of oldopts, modifying the specified parameters with the specified
values.

options = psoptimset(oldopts,newopts) combines an existing
options structure, oldopts, with a new options structure, newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

Options The following table lists the options you can set with psoptimset.
See“Pattern Search Options” on page 8-2 for a complete description of
the options and their values. Values in {} denote the default value.
You can also view the optimization parameters and defaults by typing
psoptimset at the command line.

10-33

psoptimset

Option Description Values

Cache With Cache set to 'on',
patternsearch keeps
a history of the mesh
points it polls and does
not poll points close to
them again at subsequent
iterations. Use this option
if patternsearch runs
slowly because it is taking
a long time to compute
the objective function. If
the objective function is
stochastic, it is advised not
to use this option.

'on' | {'off'}

CacheSize Size of the history Positive scalar | {1e4}

CacheTol Positive scalar specifying
how close the current mesh
point must be to a point
in the history in order for
patternsearch to avoid
polling it. Use if 'Cache'
option is set to 'on'.

Positive scalar | {eps}

CompletePoll Complete poll around
current iterate

'on' | {'off'}

CompleteSearch Complete poll around
current iterate

'on' | {'off'}

Display Level of display 'off' | 'iter' | 'diagnose' |
{'final'}

InitialMeshSize Initial mesh size for
pattern algorithm

Positive scalar | {1.0}

InitialPenalty Initial value of the penalty
parameter

Positive scalar | {10}

10-34

psoptimset

Option Description Values

MaxFunEvals Maximum number
of objective function
evaluations

Positive integer |
{2000*numberOfVariables}

MaxIter Maximum number of
iterations

Positive integer |
{100*numberOfVariables}

MaxMeshSize Maximum mesh size used
in a poll/search step

Positive scalar | {Inf}

MeshAccelerator Accelerate convergence
near a minimum

'on' | {'off'}

MeshContraction Mesh contraction factor,
used when iteration is
unsuccessful

Positive scalar | {0.5}

MeshExpansion Mesh expansion factor,
expands mesh when
iteration is successful

Positive scalar | {2.0}

MeshRotate Rotate the pattern before
declaring a point to be
optimum

'on' | {'off'}

OutputFcn Specifies a user-defined
function that an
optimization function
calls at each iteration

@psoutputhistory | {[]}

PenaltyFactor Penalty update parameter Positive scalar | {100}

PlotFcn Specifies plots of output
from the pattern search

@psplotbestf | @psplotmeshsize |
@psplotfuncount | @psplotbestx |
{[]}

PlotInterval Specifies that plot
functions will be called
at every interval

{1}

10-35

psoptimset

Option Description Values

PollingOrder Order of poll directions in
pattern search

'Random' | 'Success' |
{'Consecutive'}

PollMethod Polling strategy used in
pattern search

{'GPSPositiveBasis2N'} |
'GPSPositiveBasisNp1'|
'MADSPositiveBasis2N' |
'MADSPositiveBasisNp1'

ScaleMesh Automatic scaling of
variables

{'on'} | 'off'

SearchMethod Type of search used in
pattern search

'GPSPositiveBasisNp1' |
'GPSPositiveBasis2N' |
'MADSPositiveBasisNp1' |
'MADSPositiveBasis2N' |
@searchga | @searchlhs |
@searchneldermead| {[]}

TimeLimit Total time (in seconds)
allowed for optimization

Positive scalar | {Inf}

TolBind Binding tolerance Positive scalar | {1e-3}

TolCon Tolerance on constraints Positive scalar | {1e-6}

TolFun Tolerance on function Positive scalar | {1e-6}

TolMesh Tolerance on mesh size Positive scalar | {1e-6}

TolX Tolerance on variable Positive scalar | {1e-6}

Vectorized Specifies whether
functions are vectorized

'on' | {'off'}

See Also patternsearch, psoptimget

10-36

simulannealbnd

Purpose Find unconstrained or bound-constrained minimum of function of
several variables using simulated annealing algorithm

Syntax x = simulannealbnd(fun,x0)
x = simulannealbnd(fun,x0,lb,ub)
x = simulannealbnd(fun,x0,lb,ub,options)
[x,fval] = simulannealbnd(...)
[x,fval,exitflag] = simulannealbnd(...)
[x,fval,exitflag,output] = simulannealbnd(fun,...)

Description x = simulannealbnd(fun,x0) starts at x0 and finds a local minimum
x to the objective function specified by the function handle fun. The
objective function accepts input x and returns a scalar function value
evaluated at x. x0 may be a scalar or a vector.

x = simulannealbnd(fun,x0,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that a solution is found in the
range lb ≤ x ≤ ub. Use empty matrices for lb and ub if no bounds exist.
Set lb(i) to -Inf if x(i) is unbounded below; set ub(i) to Inf if x(i)
is unbounded above.

x = simulannealbnd(fun,x0,lb,ub,options) minimizes with the
default optimization parameters replaced by values in the structure
options, which can be created using the saoptimset function. See the
saoptimset reference page for details.

[x,fval] = simulannealbnd(...) returns fval, the value of the
objective function at x.

[x,fval,exitflag] = simulannealbnd(...) returns exitflag,
an integer identifying the reason the algorithm terminated. The
following lists the values of exitflag and the corresponding reasons
the algorithm terminated:

• 1 — Average change in the value of the objective function over
options.StallIterLimit iterations is less than options.TolFun.

• 5 — options.ObjectiveLimit limit reached.

• 0 — Maximum number of function evaluations or iterations exceeded.

10-37

simulannealbnd

• -1 — Optimization terminated by the output or plot function.

• -2 — No feasible point found.

• -5 — Time limit exceeded.

[x,fval,exitflag,output] = simulannealbnd(fun,...) returns
output, a structure that contains information about the problem and
the performance of the algorithm. The output structure contains the
following fields:

• problemtype — Type of problem: unconstrained or bound
constrained.

• iterations — The number of iterations computed.

• funccount — The number of evaluations of the objective function.

• message — The reason the algorithm terminated.

• temperature — Temperature when the solver terminated.

• totaltime — Total time for the solver to run.

• randstate — The state of rand, the MATLAB random number
generator, just before the algorithm started.

• randnstate — The state of randn the MATLAB normal random
number generator, just before the algorithm started. You can use
the values of randstate and randnstate to reproduce the output of
simulannealbnd. See “Reproducing Your Results” on page 7-5.

Examples Minimization of De Jong’s fifth function, a two-dimensional function
with many local minima:

dejong5fcn

10-38

simulannealbnd

x0 = [0 0];

[x,fval] = simulannealbnd(@dejong5fcn,x0)

Optimization terminated: change in best function value

less than options.TolFun.

x =

0.0392 -31.9700

fval =

2.9821

Minimization of De Jong’s fifth function subject to lower and upper
bounds:

10-39

simulannealbnd

x0 = [0 0];

lb = [-64 -64];

ub = [64 64];

[x,fval] = simulannealbnd(@dejong5fcn,x0,lb,ub)

Optimization terminated: change in best function value

less than options.TolFun.

x =

-31.9652 -32.0286

fval =

0.9980

The objective can also be an anonymous function:

fun = @(x) 3*sin(x(1))+exp(x(2));

x = simulannealbnd(fun,[1;1],[0 0])

Optimization terminated: change in best function value

less than options.TolFun.

x =

457.1045

0.0000

Minimization of De Jong’s fifth function while displaying plots:

x0 = [0 0];

options = saoptimset('PlotFcns',{@saplotbestx,...

@saplotbestf,@saplotx,@saplotf});

simulannealbnd(@dejong5fcn,x0,[],[],options)

Optimization terminated: change in best function value

less than options.TolFun.

10-40

simulannealbnd

ans =

0.0230 -31.9806

The plots displayed are shown below.

See Also ga, patternsearch, saoptimget, saoptimset, threshacceptbnd

10-41

threshacceptbnd

Purpose Find unconstrained or bound-constrained minimum of function of
several variables using threshold acceptance algorithm

Syntax x = threshacceptbnd(fun,x0)
x = threshacceptbnd(fun,x0,lb,ub)
x = threshacceptbnd(fun,x0,lb,ub,options)
[x,fval] = threshacceptbnd(...)
[x,fval,exitflag] = threshacceptbnd(...)
[x,fval,exitflag,output] = threshacceptbnd(...)

Description x = threshacceptbnd(fun,x0) starts at x0 and finds a local minimum
x to the objective function specified by the function handle fun. The
objective function accepts input x and returns a scalar function value
evaluated at x. x0 may be a scalar or a vector.

x = threshacceptbnd(fun,x0,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that a solution is found in the
range lb ≤ x ≤ ub. Use empty matrices for lb and ub if no bounds exist.
Set lb(i) to -Inf if x(i) is unbounded below; set ub(i) to Inf if x(i)
is unbounded above.

x = threshacceptbnd(fun,x0,lb,ub,options) minimizes with the
default optimization parameters replaced by values in the structure
options, which can be created using the saoptimset function. See the
saoptimset reference page for details.

[x,fval] = threshacceptbnd(...) returns fval, the value of the
objective function at x.

[x,fval,exitflag] = threshacceptbnd(...) returns exitflag,
an integer identifying the reason the algorithm terminated. The
following lists the values of exitflag and the corresponding reasons
the algorithm terminated:

• 1 — Average change in the value of the objective function over
options.StallIterLimit iterations is less than options.TolFun.

• 5 — options.ObjectiveLimit limit reached.

• 0 — Maximum number of function evaluations or iterations exceeded.

10-42

threshacceptbnd

• -1 — Optimization terminated by the output or plot function.

• -2 — No feasible point found.

• -5 — Time limit exceeded.

[x,fval,exitflag,output] = threshacceptbnd(...) returns
output, a structure that contains information about the problem and
the performance of the algorithm. The output structure contains the
following fields:

• problemtype — Type of problem: unconstrained or bound
constrained.

• iterations — The number of iterations computed.

• funccount — The number of evaluations of the objective function.

• message — The reason the algorithm terminated.

• temperature — Temperature when the solver terminated.

• totaltime — Total time for the solver to run.

• randstate — The state of rand, the MATLAB random number
generator, just before the algorithm started.

• randnstate — The state of randn, the MATLAB normal random
number generator, just before the algorithm started. You can use
the values of randstate and randnstate to reproduce the output of
simulannealbnd. See “Reproducing Your Results” on page 7-5.

Examples Minimizing De Jong’s fifth function, a two-dimensional function with
many local minima:

dejong5fcn

10-43

threshacceptbnd

x0 = [0 0];

x = threshacceptbnd(@dejong5fcn,x0)

Optimization terminated: change in best function value

less than options.TolFun.

x =

0 0

Minimization of De Jong’s fifth function subject to lower and upper
bounds:

x0 = [0 0];

lb = [-64 -64]; ub = [64 64];

10-44

threshacceptbnd

[x,fval] = threshacceptbnd(@dejong5fcn,x0,lb,ub)

Optimization terminated: change in best function value

less than options.TolFun.

x =

15.1309 -32.3303

fval =

4.3932

Minimization of De Jong’s fifth function while displaying plots:

x0 = [0 0];

options = saoptimset('PlotFcns',{@saplotbestx,...

@saplotbestf, @saplotx,@saplotf});

[x,fval,exitflag] = threshacceptbnd(@dejong5fcn,x0,[],[],options)

Optimization terminated: change in best function value

less than options.TolFun.

x =

0 0

fval =

12.6705

exitflag =

1

The plots displayed are shown below.

10-45

threshacceptbnd

See Also saoptimget, saoptimset, threshacceptbnd, patternsearch, ga

10-46

saoptimget

Purpose Values of simulated annealing or threshold acceptance algorithm
options structure

Syntax val = saoptimget(options, 'name')
val = saoptimget(options, 'name', default)

Description val = saoptimget(options, 'name') returns the value of the
parameter name from the simulated annealing or threshold acceptance
algorithm options structure options. saoptimget(options, 'name')
returns an empty matrix [] if the value of name is not specified in
options. It is only necessary to type enough leading characters of
name to uniquely identify the parameter. saoptimget ignores case in
parameter names.

val = saoptimget(options, 'name', default) returns the 'name'
parameter, but returns the default value if the 'name' parameter is
not specified (or is []) in options.

Example opts = saoptimset('TolFun',1e-4);
val = saoptimget(opts,'TolFun');

returns val = 1e-4 for TolFun.

See Also For more about these options, see “Simulated Annealing and Threshold
Acceptance Algorithm Options” on page 8-45.

saoptimset, simulannealbnd, threshacceptbnd

10-47

saoptimset

Purpose Create simulated annealing algorithm or threshold acceptance options
structure

Syntax saoptimset
options = saoptimset
options = saoptimset('param1',value1,'param2',value2,...)
options = saoptimset(oldopts,'param1',value1,...)
options = saoptimset(oldopts,newopts)
options = saoptimset(optimfunction)

Description saoptimset with no input or output arguments displays a complete list
of parameters with their valid values.

options = saoptimset (with no input arguments) creates a structure
called options that contains the options, or parameters, for the
simulated annealing or threshold acceptance algorithm with all
parameters set to [].

options = saoptimset('param1',value1,'param2',value2,...)
creates a structure options and sets the value of 'param1' to value1,
'param2' to value2, and so on. Any unspecified parameters are set to
[]. It is sufficient to type only enough leading characters to define the
parameter name uniquely. Case is ignored for parameter names. Note
that for string values, correct case and the complete string are required.

options = saoptimset(oldopts,'param1',value1,...) creates a
copy of oldopts, modifying the specified parameters with the specified
values.

options = saoptimset(oldopts,newopts) combines an existing
options structure, oldopts, with a new options structure, newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

options = saoptimset(optimfunction) creates an options structure
with all the parameter names and default values relevant to the
optimization function optimfunction. optimfunction can be either
'simulannealbnd' or 'threshacceptbnd'. For example,

10-48

saoptimset

saoptimset('threshacceptbnd')

ans =
AnnealingFcn: @annealingfast

TemperatureFcn: @temperatureexp
AcceptanceFcn: @acceptancethresh

TolFun: 1.0000e-006
StallIterLimit: '500*numberofvariables'

MaxFunEvals: '3000*numberofvariables'
TimeLimit: Inf

MaxIter: Inf
ObjectiveLimit: -Inf

Display: 'final'
DisplayInterval: 10

HybridFcn: []
HybridInterval: 'end'

PlotFcns: []
PlotInterval: 1

OutputFcns: []
InitialTemperature: 100

ReannealInterval: 100
DataType: 'double'

Options The following table lists the options you can set with saoptimset. See
Chapter 8, “Options Reference” for a complete description of these
options and their values. Values in {} denote the default value. You
can also view the options parameters by typing saoptimset at the
command line.

10-49

saoptimset

Option Description Values

AcceptanceFcn Handle to the function the
algorithm uses to determine
if a new point is accepted

Function handle |
@acceptancethresh
|{@acceptancesa} for
simulannealbnd or
{@acceptancethresh} for
threshacceptbnd

AnnealingFcn Handle to the function the
algorithm uses to generate
new points

Function handle |
@annealingboltz |
{@annealingfast}

DataType Type of decision variable 'custom' | {'double'}

Display Level of display 'off' | 'iter' | 'diagnose' |
{'final'}

DisplayInterval Interval for iterative display Positive integer | {10}

HybridFcn Automatically run HybridFcn
(another optimization
function) during or at the end
of iterations of the solver

@fminsearch | @patternsearch |
@fminunc | @fmincon | {[]}

HybridInterval Interval (if not 'end' or
'never') at which HybridFcn
is called

Positive integer | 'never' |
{'end'}

InitialTemperature Initial value of temperature Positive integer |{100}

MaxFunEvals Maximum number of
objective function evaluations
allowed

Positive
scalar|{3000*numberOfVariables}

MaxIter Maximum number of
iterations allowed

Positive scalar | {Inf}

ObjectiveLimit Minimum objective function
value desired

Scalar | {Inf}

10-50

saoptimset

Option Description Values

OutputFcns Function(s) get(s) iterative
data and can change options
at run time

Function handle or cell array of
function handles | {[]}

PlotFcns Plot function(s) called during
iterations

Function handle or cell
array of function handles |
@saplotbestf | @saplotbestx |
@saplotf | @saplotstopping |
@saplottemperature | {[]}

PlotInterval Plot functions are called at
every interval

Positive integer |{1}

ReannealInterval Reannealing interval Positive integer | {100}

StallIterLimit Number of iterations over
which average change in
fitness function value at
current point is less than
options.TolFun

Positive integer |
{500*numberOfVariables}

TemperatureFcn Function used to update
temperature schedule

Function handle |
@temperatureboltz |
@temperaturefast |
{@temperatureexp}

TimeLimit The algorithm stops after
running for TimeLimit
seconds

Positive scalar | {Inf}

TolFun Termination tolerance on
function value

Positive scalar | {1e-6}

See Also For more about these options, see “Simulated Annealing and Threshold
Acceptance Algorithm Options” on page 8-45.

saoptimget, simulannealbnd, threshacceptbnd

10-51

saoptimset

10-52

A

Examples

Use this list to find examples in the documentation.

A Examples

Pattern Search
“Example: Finding the Minimum of a Function Using the GPS Algorithm”
on page 2-6
“Example — A Linearly Constrained Problem” on page 5-5
“Example — Working with a Custom Plot Function” on page 5-10
“Example — Using a Complete Poll in a Generalized Pattern Search” on
page 5-28
“Example — Setting Bind Tolerance” on page 5-44

Genetic Algorithm
“Example: Rastrigin’s Function” on page 3-7
“Example — Creating a Custom Plot Function” on page 6-9
“Example — Resuming the Genetic Algorithm from the Final Population”
on page 6-18
“Global vs. Local Minima” on page 6-50
GA Multiobjective on page 10-10

Simulated Annealing and Threshold Acceptance
Algorithms

“Example: Minimizing De Jong’s Fifth Function” on page 4-4

A-2

Index

IndexA
accelerator

mesh 5-40
algorithm

genetic 3-19
pattern search 2-13
simulated annealing 4-8
threshold acceptance 4-8

annealing 4-6
annealing schedule 4-6

C
cache 5-41
children

crossover 3-21
elite 3-21
in genetic algorithms 3-18
mutation 3-21

crossover 6-41
children 3-21
fraction 6-44

D
direct search 2-2
diversity 3-17

E
elite children 3-21
example

genetic algorithm 3-7 6-9 6-18
GPS algorithm 2-6 5-5
simulated annealing algorithm 4-4 7-7
threshold acceptance algorithm 7-7

expansion
mesh 5-35

exporting problems
from Genetic Algorithm Tool 6-15

from Pattern Search Tool 5-15

F
fitness function 3-16

vectorizing 6-58
writing M-files 1-3

fitness scaling 6-37

G
ga function 10-2
gamultiobj function 10-8
gaoptimget function 10-13
gaoptimset function 10-14
gatool function 10-20
generations 3-17
genetic algorithm

description 3-19
nonlinear constraint algorithm, ALGA 3-26
options 8-23
overview 3-2
setting options at command line 6-24
stopping criteria 3-23
using from command line 6-23

Genetic Algorithm Tool 6-2
defining problems 6-3
displaying plots 6-7
exporting options and problems 6-15
importing problems 6-18
opening 6-2
pausing and stopping 6-5
running 6-4
setting options 6-13

global and local minima 6-50
GPS 2-2

H
hybrid function 6-54

Index-1

Index

I
importing problems

to Genetic Algorithm Tool 6-18
to Pattern Search Tool 5-18

individuals
applying the fitness function 3-16

initial population 3-20

M
M-files

writing 1-3
MADS 2-2
maximizing functions 1-4
mesh 2-11

accelerator 5-40
expansion and contraction 5-35

minima
global 6-50
local 6-50

minimizing functions 1-4
mutation 6-41

options 6-42

N
nonlinear constraint

genetic algorithm 6-6
pattern search 5-20

nonlinear constraint algorithms
ALGA 3-26
ALPS 2-22

O
objective function 4-6
objective functions

writing M-files 1-3
options

genetic algorithm 8-23

simulated annealing algorithm 8-45
threshold acceptance algorithm 8-45

P
parents in genetic algorithms 3-18
pattern search

description 2-13
nonlinear constraint algorithm, ALPS 2-22
options 8-2
overview 2-2
setting options at command line 5-21
terminology 2-10
using from command line 5-19

Pattern Search Tool 5-2
defining problems 5-3
displaying plots 5-8
exporting options and problems 5-15
importing problems 5-18
opening 5-2
pausing and stopping 5-8
running 5-4
setting options 5-14

patternsearch function 10-23
plots

genetic algorithm 6-7
pattern search 5-8

poll 2-11
complete 5-27
method 5-25

population 3-17
initial 3-20
initial range 6-33
options 6-32
size 6-36

psearchtool function 10-30
psoptimget function 10-32
psoptimset function 10-33

Index-2

Index

R
Rastrigin’s function 3-7
reannealing 4-6
reproduction options 6-41

S
saoptimget function 10-47
saoptimset function 10-48
scaling

fitness 6-37
search method 5-32
selection function 6-40
setting options

genetic algorithm 6-32
pattern search 5-25

simulannealbnd function 10-37
simulated annealing

description 4-8
overview 4-2

simulated annealing algorithm
options 8-45

setting options at command line 7-3
stopping criteria 4-9
using from command line 7-2

stopping criteria
pattern search 2-19

T
temperature 4-6
threshacceptbnd function 10-42
threshold acceptance

description 4-8
overview 4-2

threshold acceptance algorithm
options 8-45
setting options at command line 7-3
stopping criteria 4-9
using from command line 7-2

V
vectorizing fitness functions 6-58

Index-3

	toc
	Acknowledgment
	Introducing Genetic Algorithm and Direct Search Toolbox
	What Is Genetic Algorithm and Direct Search Toolbox?
	Writing M-Files for Functions You Want to Optimize
	Computing Objective Functions
	Example — Writing an M-File
	Maximizing vs. Minimizing

	Getting Started with Direct Search
	What Is Direct Search?
	Performing a Pattern Search
	Calling patternsearch at the Command Line
	Using the Pattern Search Tool

	Example: Finding the Minimum of a Function Using the GPS Algorit
	Objective Function
	Finding the Minimum of the Function
	Plotting the Objective Function Values and Mesh Sizes

	Pattern Search Terminology
	Patterns
	Meshes
	Polling
	Expanding and Contracting

	How Pattern Search Works
	Context
	Successful Polls
	Iteration 1
	Iteration 2

	An Unsuccessful Poll
	Displaying the Results at Each Iteration
	More Iterations
	Stopping Conditions for the Pattern Search

	Description of the Nonlinear Constraint Solver

	Getting Started with the Genetic Algorithm
	What Is the Genetic Algorithm?
	Using the Genetic Algorithm, Command Line or Tool
	Calling the Function ga at the Command Line
	Using the Genetic Algorithm Tool

	Example: Rastrigin's Function
	Rastrigin's Function
	Finding the Minimum of Rastrigin's Function
	Finding the Minimum from the Command Line
	Displaying Plots

	Some Genetic Algorithm Terminology
	Fitness Functions
	Individuals
	Populations and Generations
	Diversity
	Fitness Values and Best Fitness Values
	Parents and Children

	How the Genetic Algorithm Works
	Outline of the Algorithm
	Initial Population
	Creating the Next Generation
	Crossover Children
	Mutation Children

	Plots of Later Generations
	Stopping Conditions for the Algorithm

	Description of the Nonlinear Constraint Solver

	Getting Started with Simulated Annealing and Threshold Acceptanc
	What Are Simulated Annealing and Threshold Acceptance?
	Calling the Simulated Annealing and Threshold Acceptance Solvers
	Example: Minimizing De Jong's Fifth Function
	Some Simulated Annealing and Threshold Acceptance Terminology
	Objective Function
	Temperature
	Annealing Schedule
	Reannealing

	How Simulated Annealing and Threshold Acceptance Work
	Outline of the Algorithm
	Stopping Conditions for the Algorithm

	Using Direct Search
	Overview of the Pattern Search Tool (GUI)
	Opening the Pattern Search Tool
	Defining a Problem in the Pattern Search Tool
	Constrained Problems

	Running a Pattern Search
	Example — A Linearly Constrained Problem
	Performing a Pattern Search on the Example

	Pausing and Stopping the Algorithm
	Displaying Plots
	Example — Working with a Custom Plot Function
	Creating the Custom Plot Function
	Using the Custom Plot Function
	How the Plot Function Works

	Setting Options in the Pattern Search Tool
	Setting Options as Variables in the MATLAB Workspace

	Importing and Exporting Options and Problems
	Exporting Options, Problems, and Results
	Example — Running patternsearch on an Exported Problem
	Importing Options
	Importing a Problem

	Generating an M-File

	Performing a Pattern Search from the Command Line
	Calling patternsearch with the Default Options
	Pattern Search on Unconstrained Problems
	Pattern Search on Constrained Problems
	Additional Output Arguments

	Setting Options for patternsearch at the Command Line
	Using Options and Problems from the Pattern Search Tool

	Pattern Search Examples: Setting Options
	Poll Method
	Complete Poll
	Example — Using a Complete Poll in a Generalized Pattern Search

	Using a Search Method
	Mesh Expansion and Contraction
	Mesh Accelerator
	Using Cache
	Setting Tolerances for the Solver
	Example — Setting Bind Tolerance
	Running a Pattern Search with the Default Bind Tolerance
	Increasing the Value of Bind Tolerance

	Constrained Minimization Using patternsearch

	Parameterizing Functions Called by patternsearch
	Using Additional Parameters
	Parameterizing Functions Using Anonymous Functions with patterns
	Parameterizing a Function Using a Nested Function with patternse

	Using the Genetic Algorithm
	Overview of the Genetic Algorithm Tool
	Opening the Genetic Algorithm Tool
	Defining an Unconstrained Problem in the Genetic Algorithm Tool
	Running the Genetic Algorithm
	Pausing and Stopping the Algorithm
	Setting Stopping Criteria

	Displaying Plots
	Example — Creating a Custom Plot Function
	Creating the Custom Plot Function
	Using the Plot Function
	How the Plot Function Works

	Reproducing Your Results
	Setting Options in the Genetic Algorithm Tool
	Setting Options as Variables in the MATLAB Workspace

	Importing and Exporting Options and Problems
	Exporting Options and Problems
	Example — Running ga on an Exported Problem
	Importing Options
	Importing Problems
	Resetting the Problem Fields

	Example — Resuming the Genetic Algorithm from the Final Populati
	Generating an M-File

	Using the Genetic Algorithm from the Command Line
	Running ga with the Default Options
	Additional Output Arguments

	Setting Options for ga at the Command Line
	Using Options and Problems from the Genetic Algorithm Tool
	Reproducing Your Results
	Resuming ga from the Final Population of a Previous Run
	Running ga from an M-File

	Genetic Algorithm Examples
	Improving Your Results
	Population Diversity
	Example — Setting the Initial Range
	Setting the Population Size

	Fitness Scaling
	Comparing Rank and Top Scaling

	Selection
	Reproduction Options
	Mutation and Crossover
	Setting the Amount of Mutation
	Setting the Crossover Fraction
	Crossover Without Mutation
	Mutation Without Crossover

	Comparing Results for Varying Crossover Fractions
	Global vs. Local Minima
	Running the Genetic Algorithm on the Example

	Using a Hybrid Function
	Setting the Maximum Number of Generations
	Vectorizing the Fitness Function
	Constrained Minimization Using ga

	Parameterizing Functions Called by ga
	Using Additional Parameters
	Parameterizing Functions Using Anonymous Functions with ga
	Parameterizing a Function Using a Nested Function with ga

	Using the Simulated Annealing and Threshold Acceptance Algorithm
	Using the Simulated Annealing and Threshold Acceptance Algorithm
	Running simulannealbnd and threshacceptbnd with the Default Opti
	Additional Output Arguments

	Setting Options for simulannealbnd and threshacceptbnd at the Co
	Reproducing Your Results

	Simulated Annealing and Threshold Acceptance Examples

	Options Reference
	Pattern Search Options
	Pattern Search Tool vs. Command Line
	Plot Options
	Structure of the Plot Functions

	Poll Options
	Search Options
	Structure of the Search Function

	Mesh Options
	Algorithm Settings
	Cache Options
	Stopping Criteria
	Output Function Options
	Structure of the Output Function

	Display to Command Window Options
	Vectorize Option
	Options Table for Pattern Search Algorithms

	Genetic Algorithm Options
	Genetic Algorithm Tool vs. Command Line
	Plot Options
	Structure of the Plot Functions
	The State Structure

	Population Options
	Fitness Scaling Options
	Selection Options
	Reproduction Options
	Mutation Options
	Crossover Options
	Migration Options
	Algorithm Settings
	Multiobjective Options
	Hybrid Function Options
	Stopping Criteria Options
	Output Function Options
	Structure of the Output Function

	Display to Command Window Options
	Vectorize Option

	Simulated Annealing and Threshold Acceptance Algorithm Options
	saoptimset At The Command Line
	Plot Options
	Structure of the Plot Functions

	Temperature Options
	Algorithm Settings
	Hybrid Function Options
	Stopping Criteria Options
	Output Function Options
	Structure of the Output Function

	Display Options

	Functions — By Category
	Genetic Algorithm
	Direct Search
	Simulated Annealing and Threshold Acceptance Algorithms

	Functions — Alphabetical List
	GA Multiobjective

	Examples
	Pattern Search
	Genetic Algorithm
	Simulated Annealing and Threshold Acceptance Algorithms

	Index

	tables
	Custom Plot Function Statements
	Option Availability Table for GPS and MADS Algorithms

